Intelligent Gold Nanoparticles with Oncogenic MicroRNA-Dependent Activities to Manipulate Tumorigenic Environments for Synergistic Tumor Therapy.

Autor: Wang X; Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China., Yang T; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China., Yu Z; Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China., Liu T; Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China., Jin R; Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China., Weng L; Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China., Bai Y; Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China., Gooding JJ; School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia., Zhang Y; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China., Chen X; Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China.
Jazyk: angličtina
Zdroj: Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2022 Apr; Vol. 34 (15), pp. e2110219. Date of Electronic Publication: 2022 Mar 07.
DOI: 10.1002/adma.202110219
Abstrakt: Tumorigenic environments, especially aberrantly overexpressed oncogenic microRNAs, play a critical role in various activities of tumor progression. However, developing strategies to effectively utilize and manipulate these oncogenic microRNAs for tumor therapy is still a challenge. To address this challenge, spherical nucleic acids (SNAs) consisting of gold nanoparticles in the core and antisense oligonucleotides as the shell are fabricated. Hybridized to the oligonucleotide shell is a DNA sequence to which doxorubicin is conjugated (DNA-DOX). The oligonucleotides shell is designed to capture overexpressed miR-21/miR-155 and inhibit the expression of these oncogenic miRNAs in tumor cells after tumor accumulation to manipulate genetic environment for accurate gene therapy. This process further induces the aggregation of these SNAs, which not only generates photothermal agents to achieve on-demand photothermal therapy in situ, but also enlarges the size of SNAs to enhance the retention time in the tumor for sustained therapy. The capture of the relevant miRNAs simultaneously triggers the intracellular release of the DNA-DOX from the SNAs to deliver tumor-specific chemotherapy. Both in vivo and in vitro results indicate that this combination strategy has excellent tumor inhibition properties with high survival rate of tumor-bearing mice, and can thus be a promising candidate for effective tumor treatment.
(© 2022 Wiley-VCH GmbH.)
Databáze: MEDLINE