A functional genomics approach in Tanzanian population identifies distinct genetic regulators of cytokine production compared to European population.

Autor: Boahen CK; Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands., Temba GS; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi 251, Tanzania., Kullaya VI; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi 251, Tanzania; Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi 251, Tanzania., Matzaraki V; Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands., Joosten LAB; Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands., Kibiki G; Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi 251, Tanzania; Department of Paediatrics, Kilimanjaro Christian Medical University College, Moshi 251, Tanzania., Mmbaga BT; Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi 251, Tanzania., van der Ven A; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi 251, Tanzania., de Mast Q; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands., Netea MG; Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn 53115, Germany., Kumar V; Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9700, the Netherlands; Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Medical Sciences Complex, Deralakatte, Mangalore 575018, India. Electronic address: v.kumar@radboudumc.nl.
Jazyk: angličtina
Zdroj: American journal of human genetics [Am J Hum Genet] 2022 Mar 03; Vol. 109 (3), pp. 471-485. Date of Electronic Publication: 2022 Feb 14.
DOI: 10.1016/j.ajhg.2022.01.014
Abstrakt: Humans exhibit remarkable interindividual and interpopulation immune response variability upon microbial challenges. Cytokines play a vital role in regulating inflammation and immune responses, but dysregulation of cytokine responses has been implicated in different disease states. Host genetic factors were previously shown to significantly impact cytokine response heterogeneity mainly in European-based studies, but it is unclear whether these findings are transferable to non-European individuals. Here, we aimed to identify genetic variants modulating cytokine responses in healthy adults of East African ancestry from Tanzania. We leveraged both cytokine and genetic data and performed genome-wide cytokine quantitative trait loci (cQTLs) mapping. The results were compared with another cohort of healthy adults of Western European ancestry via direct overlap and functional enrichment analyses. We also performed meta-analyses to identify cQTLs with congruent effect direction in both populations. In the Tanzanians, cQTL mapping identified 80 independent suggestive loci and one genome-wide significant locus (TBC1D22A) at chromosome 22; SNP rs12169244 was associated with IL-1b release after Salmonella enteritidis stimulation. Remarkably, the identified cQTLs varied significantly when compared to the European cohort, and there was a very limited percentage of overlap (1.6% to 1.9%). We further observed ancestry-specific pathways regulating induced cytokine responses, and there was significant enrichment of the interferon pathway specifically in the Tanzanians. Furthermore, contrary to the Europeans, genetic variants in the TLR10-TLR1-TLR6 locus showed no effect on cytokine response. Our data reveal both ancestry-specific effects of genetic variants and pathways on cytokine response heterogeneity, hence arguing for the importance of initiatives to include diverse populations into genomics research.
Competing Interests: Declaration of interests The authors declare no competing interests.
(Copyright © 2022 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
Databáze: MEDLINE