Carbon SH-SAW-Based Electronic Nose to Discriminate and Classify Sub-ppm NO 2 .

Autor: Cruz C; Grupo de Tecnología de Sensores Avanzados (SENSAVAN), Instituto de Tecnologías Físicas y de la Información (ITEFI), CSIC, 28006 Madrid, Spain.; Department of Electronics, University of Alcala, 28871 Alcala de Henares, Madrid, Spain., Matatagui D; Grupo de Tecnología de Sensores Avanzados (SENSAVAN), Instituto de Tecnologías Físicas y de la Información (ITEFI), CSIC, 28006 Madrid, Spain.; Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain., Ramírez C; Institute of Ceramics and Glass, ICV-CSIC, Kelsen 5, Cantoblanco, 28049 Madrid, Spain., Badillo-Ramirez I; Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico.; Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark., de la O-Cuevas E; Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico.; Unidad Académica de Física, Universidad Autónoma de Zacatecas, Zacatecas 98068, Mexico., Saniger JM; Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico., Horrillo MC; Grupo de Tecnología de Sensores Avanzados (SENSAVAN), Instituto de Tecnologías Físicas y de la Información (ITEFI), CSIC, 28006 Madrid, Spain.
Jazyk: angličtina
Zdroj: Sensors (Basel, Switzerland) [Sensors (Basel)] 2022 Feb 07; Vol. 22 (3). Date of Electronic Publication: 2022 Feb 07.
DOI: 10.3390/s22031261
Abstrakt: In this research, a compact electronic nose (e-nose) based on a shear horizontal surface acoustic wave (SH-SAW) sensor array is proposed for the NO 2 detection, classification and discrimination among some of the most relevant surrounding toxic chemicals, such as carbon monoxide (CO), ammonia (NH 3 ), benzene (C 6 H 6 ) and acetone (C 3 H 6 O). Carbon-based nanostructured materials (CBNm), such as mesoporous carbon (MC), reduced graphene oxide (rGO), graphene oxide (GO) and polydopamine/reduced graphene oxide (PDA/rGO) are deposited as a sensitive layer with controlled spray and Langmuir-Blodgett techniques. We show the potential of the mass loading and elastic effects of the CBNm to enhance the detection, the classification and the discrimination of NO 2 among different gases by using Machine Learning (ML) techniques (e.g., PCA, LDA and KNN). The small dimensions and low cost make this analytical system a promising candidate for the on-site discrimination of sub-ppm NO 2 .
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje