High-Performance Humidity Sensing in π-Conjugated Molecular Assemblies through the Engineering of Electron/Proton Transport and Device Interfaces.

Autor: Turetta N; Université de Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France., Stoeckel MA; Université de Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France., Furlan de Oliveira R; Université de Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France.; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil., Devaux F; Laboratoire de Chimie des Polymères Faculté des Sciences, Université Libre de Bruxelles (ULB), CP 206/1 Boulevard du Triomphe, 1050 Bruxelles, Belgium., Greco A; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany., Cendra C; Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States., Gullace S; Université de Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France., Gicevičius M; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K., Chattopadhyay B; Laboratoire de Chimie des Polymères Faculté des Sciences, Université Libre de Bruxelles (ULB), CP 206/1 Boulevard du Triomphe, 1050 Bruxelles, Belgium.; Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway., Liu J; Laboratoire de Chimie des Polymères Faculté des Sciences, Université Libre de Bruxelles (ULB), CP 206/1 Boulevard du Triomphe, 1050 Bruxelles, Belgium., Schweicher G; Laboratoire de Chimie des Polymères Faculté des Sciences, Université Libre de Bruxelles (ULB), CP 206/1 Boulevard du Triomphe, 1050 Bruxelles, Belgium., Sirringhaus H; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K., Salleo A; Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States., Bonn M; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany., Backus EHG; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.; Department of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria., Geerts YH; Laboratoire de Chimie des Polymères Faculté des Sciences, Université Libre de Bruxelles (ULB), CP 206/1 Boulevard du Triomphe, 1050 Bruxelles, Belgium.; International Solvay Institutes of Physics and Chemistry, ULB, CP 231, Boulevard du Triomphe, 1050 Brussels, Belgium., Samorì P; Université de Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France.
Jazyk: angličtina
Zdroj: Journal of the American Chemical Society [J Am Chem Soc] 2022 Feb 16; Vol. 144 (6), pp. 2546-2555. Date of Electronic Publication: 2022 Feb 07.
DOI: 10.1021/jacs.1c10119
Abstrakt: The development of systems capable of responding to environmental changes, such as humidity, requires the design and assembly of highly sensitive and efficiently transducing elements. Such a challenge can be mastered only by disentangling the role played by each component of the responsive system, thus ultimately achieving high performance by optimizing the synergistic contribution of all functional elements. Here, we designed and synthesized a novel [1]benzothieno[3,2- b ][1]benzothiophene derivative equipped with hydrophilic oligoethylene glycol lateral chains (OEG-BTBT) that can electrically transduce subtle changes in ambient humidity with high current ratios (>10 4 ) at low voltages (2 V), reaching state-of-the-art performance. Multiscale structural, spectroscopical, and electrical characterizations were employed to elucidate the role of each device constituent, viz., the active material's BTBT core and OEG side chains, and the device interfaces. While the BTBT molecular core promotes the self-assembly of (semi)conducting crystalline films, its OEG side chains are prone to adsorb ambient moisture. These chains act as hotspots for hydrogen bonding with atmospheric water molecules that locally dissociate when a bias voltage is applied, resulting in a mixed electronic/protonic long-range conduction throughout the film. Due to the OEG-BTBT molecules' orientation with respect to the surface and structural defects within the film, water molecules can access the humidity-sensitive sites of the SiO 2 substrate surface, whose hydrophilicity can be tuned for an improved device response. The synergistic chemical engineering of materials and interfaces is thus key for designing highly sensitive humidity-responsive electrical devices whose mechanism relies on the interplay of electron and proton transport.
Databáze: MEDLINE