Identification of fragments binding to SARS-CoV-2 nsp10 reveals ligand-binding sites in conserved interfaces between nsp10 and nsp14/nsp16.

Autor: Kozielski F; School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK., Sele C; Department of Biology & Lund Protein Production Platform, Lund University Sölvegatan 35 22362 Lund Sweden wolfgang.knecht@biol.lu.se +46 46 2227785., Talibov VO; BioMAX beamline, MAX IV Laboratory Fotongatan 2 22484 Lund Sweden., Lou J; School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK., Dong D; School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK., Wang Q; School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK., Shi X; School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK., Nyblom M; Department of Biology & Lund Protein Production Platform, Lund University Sölvegatan 35 22362 Lund Sweden wolfgang.knecht@biol.lu.se +46 46 2227785., Rogstam A; Department of Biology & Lund Protein Production Platform, Lund University Sölvegatan 35 22362 Lund Sweden wolfgang.knecht@biol.lu.se +46 46 2227785., Krojer T; BioMAX beamline, MAX IV Laboratory Fotongatan 2 22484 Lund Sweden., Fisher Z; Department of Biology & Lund Protein Production Platform, Lund University Sölvegatan 35 22362 Lund Sweden wolfgang.knecht@biol.lu.se +46 46 2227785.; European Spallation Source ERIC P.O. Box 176 22100 Lund Sweden zoe.fisher@ess.eu +46 721792250., Knecht W; Department of Biology & Lund Protein Production Platform, Lund University Sölvegatan 35 22362 Lund Sweden wolfgang.knecht@biol.lu.se +46 46 2227785.
Jazyk: angličtina
Zdroj: RSC chemical biology [RSC Chem Biol] 2021 Oct 06; Vol. 3 (1), pp. 44-55. Date of Electronic Publication: 2021 Oct 06 (Print Publication: 2022).
DOI: 10.1039/d1cb00135c
Abstrakt: Since the emergence of SARS-CoV-2 in 2019, Covid-19 has developed into a serious threat to our health, social and economic systems. Although vaccines have been developed in a tour-de-force and are now increasingly available, repurposing of existing drugs has been less successful. There is a clear need to develop new drugs against SARS-CoV-2 that can also be used against future coronavirus infections. Non-structural protein 10 (nsp10) is a conserved stimulator of two enzymes crucial for viral replication, nsp14 and nsp16, exhibiting exoribonuclease and methyltransferase activities. Interfering with RNA proofreading or RNA cap formation represents intervention strategies to inhibit replication. We applied fragment-based screening using nano differential scanning fluorometry and X-ray crystallography to identify ligands targeting SARS-CoV-2 nsp10. We identified four fragments located in two distinct sites: one can be modelled to where it would be located in the nsp14-nsp10 complex interface and the other in the nsp16-nsp10 complex interface. Microscale thermophoresis (MST) experiments were used to quantify fragment affinities for nsp10. Additionally, we showed by MST that the interaction by nsp14 and 10 is weak and thereby that complex formation could be disrupted by small molecules. The fragments will serve as starting points for the development of more potent analogues using fragment growing techniques and structure-based drug design.
Competing Interests: The authors declare no conflict of interest.
(This journal is © The Royal Society of Chemistry.)
Databáze: MEDLINE