Generation of NKX2.5 GFP Reporter Human iPSCs and Differentiation Into Functional Cardiac Fibroblasts.

Autor: López-Muneta L; Regenerative Medicine Program, Foundation for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, Pamplona, Spain., Linares J; Regenerative Medicine Program, Foundation for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, Pamplona, Spain., Casis O; Departament of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain., Martínez-Ibáñez L; Program of Cardiovascular Diseases, Foundation for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, Pamplona, Spain., González Miqueo A; Program of Cardiovascular Diseases, Foundation for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, Pamplona, Spain.; Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain., Bezunartea J; Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, University of Navarra Clinic, Pamplona, Spain., Sanchez de la Nava AM; Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.; Centro de Investigación Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain., Gallego M; Departament of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain., Fernández-Santos ME; Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.; Centro de Investigación Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain., Rodriguez-Madoz JR; Hemato-oncology Program, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain., Aranguren XL; Regenerative Medicine Program, Foundation for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, Pamplona, Spain., Fernández-Avilés F; Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.; Centro de Investigación Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.; Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain., Segovia JC; Cell Technology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.; Unidad Mixta de Terapias Avanzadas, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain., Prósper F; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Department of Hematology and Cell Therapy, University of Navarra Clinic, Pamplona, Spain., Carvajal-Vergara X; Regenerative Medicine Program, Foundation for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, Pamplona, Spain.
Jazyk: angličtina
Zdroj: Frontiers in cell and developmental biology [Front Cell Dev Biol] 2022 Jan 21; Vol. 9, pp. 797927. Date of Electronic Publication: 2022 Jan 21 (Print Publication: 2021).
DOI: 10.3389/fcell.2021.797927
Abstrakt: Direct cardiac reprogramming has emerged as an interesting approach for the treatment and regeneration of damaged hearts through the direct conversion of fibroblasts into cardiomyocytes or cardiovascular progenitors. However, in studies with human cells, the lack of reporter fibroblasts has hindered the screening of factors and consequently, the development of robust direct cardiac reprogramming protocols.In this study, we have generated functional human NKX2.5 GFP reporter cardiac fibroblasts. We first established a new NKX2.5 GFP reporter human induced pluripotent stem cell (hiPSC) line using a CRISPR-Cas9-based knock-in approach in order to preserve function which could alter the biology of the cells. The reporter was found to faithfully track NKX2.5 expressing cells in differentiated NKX2.5 GFP hiPSC and the potential of NKX2.5-GFP + cells to give rise to the expected cardiac lineages, including functional ventricular- and atrial-like cardiomyocytes, was demonstrated. Then NKX2.5 GFP cardiac fibroblasts were obtained through directed differentiation, and these showed typical fibroblast-like morphology, a specific marker expression profile and, more importantly, functionality similar to patient-derived cardiac fibroblasts. The advantage of using this approach is that it offers an unlimited supply of cellular models for research in cardiac reprogramming, and since NKX2.5 is expressed not only in cardiomyocytes but also in cardiovascular precursors, the detection of both induced cell types would be possible. These reporter lines will be useful tools for human direct cardiac reprogramming research and progress in this field.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2022 López-Muneta, Linares, Casis, Martínez-Ibáñez, González Miqueo, Bezunartea, Sanchez de la Nava, Gallego, Fernández-Santos, Rodriguez-Madoz, Aranguren, Fernández-Avilés, Segovia, Prósper and Carvajal-Vergara.)
Databáze: MEDLINE