Self-Organizing, Environmentally Stable, and Low-Cost Copper-Nickel Complex Inks for Printed Flexible Electronics.

Autor: Li W; Center of Micro-Nano Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.; Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.; Research Center for Functional Materials, National Institute for Materials Science, Ibaraki 3050044, Japan., Li L; Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 3058571, Japan.; International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Ibaraki 3050044, Japan., Li F; Center of Micro-Nano Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.; Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China., Kawakami K; Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 3058571, Japan.; International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Ibaraki 3050044, Japan., Sun Q; School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China., Nakayama T; Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 3058571, Japan.; International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Ibaraki 3050044, Japan., Liu X; School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China., Kanehara M; C-INK Co., Ltd., Okayama 7191121, Japan., Zhang J; Center of Micro-Nano Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.; Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China., Minari T; Research Center for Functional Materials, National Institute for Materials Science, Ibaraki 3050044, Japan.
Jazyk: angličtina
Zdroj: ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2022 Feb 16; Vol. 14 (6), pp. 8146-8156. Date of Electronic Publication: 2022 Feb 01.
DOI: 10.1021/acsami.1c21633
Abstrakt: Cost-effective copper conductive inks are considered as the most promising alternative to expensive silver conductive inks for use in printed electronics. However, the low stability and high sintering temperature of copper inks hinder their practical application. Herein, we develop rapidly customizable and stable copper-nickel complex inks that can be transformed in situ into uniform copper@nickel core-shell nanostructures by a self-organized process during low-temperature annealing and immediately sintered under photon irradiation to form copper-nickel alloy patterns on flexible substrates. The complex inks are synthesized within 15 min via a simple mixing process and are particle-free, air-stable, and compatible with large-area screen printing. The manufactured patterns exhibit a high conductivity of 19-67 μΩ·cm, with the value depending on the nickel content, and can maintain high oxidation resistance at 180 °C even when the nickel content is as low as 6 wt %. In addition, the printed copper-nickel alloy patterns exhibit high flexibility as a consequence of the local softening and mechanical anchoring effect between the metal pattern and the flexible substrate, showing strong potential in the additive manufacturing of highly reliable flexible electronics, such as flexible radio-frequency identification (RFID) tags and various wearable sensors.
Databáze: MEDLINE