Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting.

Autor: Wang H; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), State Key Laboratory Base of Eco-chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China., Chen L; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), State Key Laboratory Base of Eco-chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China., Tan L; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), State Key Laboratory Base of Eco-chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China., Liu X; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), State Key Laboratory Base of Eco-chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China., Wen Y; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), State Key Laboratory Base of Eco-chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China., Hou W; Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China., Zhan T; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), State Key Laboratory Base of Eco-chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. Electronic address: trzhan@qust.edu.cn.
Jazyk: angličtina
Zdroj: Journal of colloid and interface science [J Colloid Interface Sci] 2022 May; Vol. 613, pp. 349-358. Date of Electronic Publication: 2022 Jan 10.
DOI: 10.1016/j.jcis.2022.01.044
Abstrakt: Developing high-efficiency and earth-abundant electrocatalysts for electrochemical seawater-splitting is of great significance but remains a grand challenge due to the presence of high-concentration chloride. This work presents the synthesis of a three-dimensional core-shell nanostructure with an amorphous and crystalline NiFe-layered double hydroxide (NiFe-LDH) layer on sulfur-modified nickel molybdate nanorods supported by porous Ni foam (S-NiMoO 4 @NiFe-LDH/NF) through hydrothermal and electrodeposition. Benefiting from high intrinsic activity, plentiful active sites, and accelerated electron transfer, S-NiMoO 4 @NiFe-LDH/NF displays an outstanding bifunctional catalytic activity toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in both simulated alkaline seawater and natural seawater electrolytes. To reach a current density of 100 mA cm -2 , this catalyst only requires overpotentials of 273 and 315 mV for OER and 170 and 220 mV for HER in 1 M KOH + 0.5 M NaCl freshwater and 1 M KOH + seawater electrolytes, respectively. Using S-NiMoO 4 @NiFe-LDH as both anode and cathode, the electrolyzer shows superb overall seawater-splitting activity, and respectively needs low voltages of 1.68 and 1.73 V to achieve a current density of 100 mA cm -2 in simulated alkaline seawater and alkaline natural seawater electrolytes with good Cl - resistance and satisfactory durability. The electrolyzer outperforms the benchmark IrO 2 ||Pt/C pair and many other reported bifunctional catalysts and exhibits great potential for realistic seawater electrolysis.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2022 Elsevier Inc. All rights reserved.)
Databáze: MEDLINE