Characterization and use of the ECV304 autoantigenic citrullinome to understand anti-citrullinated protein/peptide autoantibodies in rheumatoid arthritis.

Autor: de França NR; Division of Rheumatology, Department of Medicine, McGill University, The Research Institute of the McGill University Health Centre, 1001 Décarie Boulevard, Montréal, QC, H4A 3J1, Canada.; Division of Rheumatology, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil., Ménard HA; Division of Rheumatology, Department of Medicine, McGill University, The Research Institute of the McGill University Health Centre, 1001 Décarie Boulevard, Montréal, QC, H4A 3J1, Canada., Lora M; Division of Rheumatology, Department of Medicine, McGill University, The Research Institute of the McGill University Health Centre, 1001 Décarie Boulevard, Montréal, QC, H4A 3J1, Canada., Zhou Z; Division of Rheumatology, Department of Medicine, McGill University, The Research Institute of the McGill University Health Centre, 1001 Décarie Boulevard, Montréal, QC, H4A 3J1, Canada., Rauch J; Division of Rheumatology, Department of Medicine, McGill University, The Research Institute of the McGill University Health Centre, 1001 Décarie Boulevard, Montréal, QC, H4A 3J1, Canada., Hitchon C; Section of Rheumatology, Department of Medicine, University of Manitoba, Winnipeg, MB, Canada., Andrade LEC; Division of Rheumatology, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil., Colmegna I; Division of Rheumatology, Department of Medicine, McGill University, The Research Institute of the McGill University Health Centre, 1001 Décarie Boulevard, Montréal, QC, H4A 3J1, Canada. ines.colmegna.med@ssss.gouv.qc.ca.
Jazyk: angličtina
Zdroj: Arthritis research & therapy [Arthritis Res Ther] 2022 Jan 13; Vol. 24 (1), pp. 23. Date of Electronic Publication: 2022 Jan 13.
DOI: 10.1186/s13075-021-02698-2
Abstrakt: Background: Anti-citrullinated protein antibodies (ACPAs) are highly specific for rheumatoid arthritis (RA). In vivo, ACPAs target peptidyl-citrulline epitopes (cit-) in a variety of proteins (cit-prot-ACPAs) and derived peptides (cit-pept-ACPAs) generated via the peptidylarginine deiminase (PAD) isoenzymes. We aimed to identify a cell line with self-citrullination capacity, to describe its autoantigenic citrullinome, and to test it as a source of autocitrullinated proteins and peptides.
Methods: Human cell lines were screened for cit-proteins by Western blot. PAD isoenzymes were identified by RT-PCR. Autocitrullination of ECV304 was optimized, and the ECV304 autocitrullinomes immunoprecipitated by sera from three RA patients were characterized by mass spectrometry. Cit-pept-ACPAs were detected using anti-CCP2 ELISA and cit-prot-ACPAs, by an auto-cit-prot-ECV304 ELISA. Sera from 177 RA patients, 59 non-RA rheumatic disease patients and 25 non-disease controls were tested.
Results: Of the seven cell lines studied, only ECV304 simultaneously overexpressed PAD2 and PAD3 and its extracts reproducibly autocitrullinated self and non-self-proteins. Proteomic analysis of the cit-ECV304 products immunoprecipitated by RA sera, identified novel cit-targets: calreticulin, profilin 1, vinculin, new 14-3-3 protein family members, chaperones, and mitochondrial enzymes. The auto-cit-prot-ECV304 ELISA had a sensitivity of 50% and a specificity of 95% for RA diagnosis.
Conclusions: ECV304 cells overexpress two of the PAD isoenzymes capable of citrullinating self-proteins. These autocitrullinated cells constitute a basic and clinical research tool that enable the detection of cit-prot-ACPAs with high diagnostic specificity and allow the identification of the specific cit-proteins targeted by individual RA sera.
(© 2022. The Author(s).)
Databáze: MEDLINE