Aspirin Inhibition of Group VI Phospholipase A2 Induces Synthetic Lethality in AAM Pathway Down-Regulated Gingivobuccal Squamous Carcinoma.

Autor: Pansare K; ICGC Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India., Mohanty B; Small Animal Imaging Facility, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India., Dhotre R; ICGC Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India., Pettiwala AM; ICGC Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India., Parab S; Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India., Gupta N; ICGC Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India., Gera P; ICGC Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.; Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India., Gardi N; Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai 400012, India.; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India., Dugge R; ICGC Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India., Sahu P; ICGC Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India., Alhans R; ICGC Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India., Kowtal P; ICGC Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India.; Sarin Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India., Chaudhari P; Small Animal Imaging Facility, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India., Sarin R; ICGC Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India.; Sarin Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.
Jazyk: angličtina
Zdroj: Cells [Cells] 2021 Dec 30; Vol. 11 (1). Date of Electronic Publication: 2021 Dec 30.
DOI: 10.3390/cells11010123
Abstrakt: Background: To elucidate the role of iPLA2/PLA2G6 in gingivobuccal squamous cell carcinoma (GB-SCC) and to ascertain the synthetic lethality-based chemoprevention role of aspirin in arachidonic acid metabolism (AAM) pathway down-regulated GB-SCC.
Methods: The in vitro efficacy of aspirin on GB-SCC cells (ITOC-03 and ITOC-04) was assessed by cell proliferation, colony formation, apoptosis, cell migration, cell cycle assay and RNA-seq, while inhibition of PLA2G6 and AAM pathway components was affirmed by qPCR, Western blot and immunofluorescence staining. The in vivo effect of aspirin was evaluated using NOD-SCID mice xenografts and immunohistochemical analysis.
Results: We found that aspirin, which has been reported to act through the COX pathway, is inhibiting PLA2G6, and thereby the COX and LOX components of the AAM pathway. The findings were validated using PLA2G6 siRNA and immunohistochemical marker panel. Moreover, a pronounced effect in ITOC-04 cells and xenografts implied aspirin-induced synthetic lethality in the AAM pathway down-regulated GB-SCC.
Conclusions: This study reveals that aspirin induces the anti-tumor effect by a previously unrecognized mechanism of PLA2G6 inhibition. In addition, the effect of aspirin is influenced by the baseline AAM pathway status and could guide precision prevention clinical trials of AAM pathway inhibitors.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje