Autor: |
Bravo Vázquez LA; Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico., Moreno Becerril MY; Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico., Mora Hernández EO; Tecnologico de Monterrey, School of Engineering and Sciences, Campus Mexico City, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, Mexico City 14380, Mexico., León Carmona GG; Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico., Aguirre Padilla ME; Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico., Chakraborty S; Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA., Bandyopadhyay A; International Rice Research Institute, Manila 4031, Philippines.; Reliance Industries Ltd., Navi Mumbai 400701, India., Paul S; Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico. |
Abstrakt: |
MicroRNAs (miRNAs) are a class of small (20-24 nucleotides), highly conserved, non-coding RNA molecules whose main function is the post-transcriptional regulation of gene expression through sequence-specific manners, such as mRNA degradation or translational repression. Since these key regulatory molecules are implicated in several biological processes, their altered expression affects the preservation of cellular homeostasis and leads to the development of a wide range of pathologies. Over the last few years, relevant investigations have elucidated that miRNAs participate in different stages of bone growth and development. Moreover, the abnormal expression of these RNA molecules in bone cells and tissues has been significantly associated with the progression of numerous bone diseases, including osteoporosis, osteosarcoma, osteonecrosis and bone metastasis, among others. In fact, miRNAs regulate multiple pathological mechanisms, including altering either osteogenic or osteoblast differentiation, metastasis, osteosarcoma cell proliferation, and bone loss. Therefore, in this present review, aiming to impulse the research arena of the biological implications of miRNA transcriptome in bone diseases and to explore their potentiality as a theragnostic target, we summarize the recent findings associated with the clinical significance of miRNAs in these ailments. |