A data mining based clinical decision support system for survival in lung cancer.
Autor: | Pontes B; Department of Computer Language and Systems, Universidad de Sevilla, Seville, Spain., Núñez F; Biomedical Informatics, Biomedical Engineering and Health Economy, Institute of Biomedicine of Seville (IBIS)/Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain., Rubio C; Department of Computer Language and Systems, Universidad de Sevilla, Seville, Spain., Moreno A; Biomedical Informatics, Biomedical Engineering and Health Economy, Institute of Biomedicine of Seville (IBIS)/Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain., Nepomuceno I; Department of Computer Language and Systems, Universidad de Sevilla, Seville, Spain., Moreno J; Biomedical Informatics, Biomedical Engineering and Health Economy, Institute of Biomedicine of Seville (IBIS)/Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain., Cacicedo J; Department of Radiation Oncology, Cruces University Hospital, Barakaldo, Spain., Praena-Fernandez JM; Methodology Unit, University Hospital Virgen del Rocío, Seville, Spain., Rodriguez GAE; Biomedical Informatics, Biomedical Engineering and Health Economy, Institute of Biomedicine of Seville (IBIS)/Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain., Parra C; Biomedical Informatics, Biomedical Engineering and Health Economy, Institute of Biomedicine of Seville (IBIS)/Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain., León BDD; Department of Radiation Oncology, University Hospital Virgen del Rocío, Seville, Spain.; Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), Seville, Spain., Del Campo ER; Department of Radiation Oncology, Tenon University Hospital, Hôpitaux Universitaires Est Parisien, Sorbonne University Medical Faculty, Paris, France., Couñago F; Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, Madrid, Spain., Riquelme J; Department of Computer Language and Systems, Universidad de Sevilla, Seville, Spain., Guerra JLL; Department of Radiation Oncology, University Hospital Virgen del Rocío, Seville, Spain.; Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), Seville, Spain. |
---|---|
Jazyk: | angličtina |
Zdroj: | Reports of practical oncology and radiotherapy : journal of Greatpoland Cancer Center in Poznan and Polish Society of Radiation Oncology [Rep Pract Oncol Radiother] 2021 Dec 30; Vol. 26 (6), pp. 839-848. Date of Electronic Publication: 2021 Dec 30 (Print Publication: 2021). |
DOI: | 10.5603/RPOR.a2021.0088 |
Abstrakt: | Background: A clinical decision support system (CDSS ) has been designed to predict the outcome (overall survival) by extracting and analyzing information from routine clinical activity as a complement to clinical guidelines in lung cancer patients. Materials and Methods: Prospective multicenter data from 543 consecutive (2013-2017) lung cancer patients with 1167 variables were used for development of the CDSS. Data Mining analyses were based on the XGBoost and Generalized Linear Models algorithms. The predictions from guidelines and the CDSS proposed were compared. Results: Overall, the highest (> 0.90) areas under the receiver-operating characteristics curve AUCs for predicting survival were obtained for small cell lung cancer patients. The AUCs for predicting survival using basic items included in the guidelines were mostly below 0.70 while those obtained using the CDSS were mostly above 0.70. The vast majority of comparisons between the guideline and CDSS AUCs were statistically significant (p < 0.05). For instance, using the guidelines, the AUC for predicting survival was 0.60 while the predictive power of the CDSS enhanced the AUC up to 0.84 (p = 0.0009). In terms of histology, there was only a statistically significant difference when comparing the AUCs of small cell lung cancer patients (0.96) and all lung cancer patients with longer (≥ 18 months) follow up (0.80; p < 0.001). Conclusions: The CDSS successfully showed potential for enhancing prediction of survival. The CDSS could assist physicians in formulating evidence-based management advice in patients with lung cancer, guiding an individualized discussion according to prognosis. Competing Interests: Conflict of interests The authors report no conflict of interest. (© 2021 Greater Poland Cancer Centre.) |
Databáze: | MEDLINE |
Externí odkaz: |