A 16-parts-per-trillion measurement of the antiproton-to-proton charge-mass ratio.
Autor: | Borchert MJ; Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.; Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany.; Physikalisch-Technische Bundesanstalt, Braunschweig, Germany., Devlin JA; Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.; CERN, Meyrin, Switzerland., Erlewein SR; Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.; CERN, Meyrin, Switzerland.; Max-Planck-Institut für Kernphysik, Heidelberg, Germany., Fleck M; Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.; Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan., Harrington JA; Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.; Max-Planck-Institut für Kernphysik, Heidelberg, Germany., Higuchi T; Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.; Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan., Latacz BM; Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan., Voelksen F; Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.; GSI-Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany., Wursten EJ; Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.; CERN, Meyrin, Switzerland.; Max-Planck-Institut für Kernphysik, Heidelberg, Germany., Abbass F; Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany., Bohman MA; Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.; Max-Planck-Institut für Kernphysik, Heidelberg, Germany., Mooser AH; Max-Planck-Institut für Kernphysik, Heidelberg, Germany., Popper D; Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany., Wiesinger M; Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.; Max-Planck-Institut für Kernphysik, Heidelberg, Germany., Will C; Max-Planck-Institut für Kernphysik, Heidelberg, Germany., Blaum K; Max-Planck-Institut für Kernphysik, Heidelberg, Germany., Matsuda Y; Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan., Ospelkaus C; Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany.; Physikalisch-Technische Bundesanstalt, Braunschweig, Germany., Quint W; GSI-Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany., Walz J; Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany.; Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, Mainz, Germany., Yamazaki Y; Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan., Smorra C; Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.; Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany., Ulmer S; Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan. stefan.ulmer@cern.ch. |
---|---|
Jazyk: | angličtina |
Zdroj: | Nature [Nature] 2022 Jan; Vol. 601 (7891), pp. 53-57. Date of Electronic Publication: 2022 Jan 05. |
DOI: | 10.1038/s41586-021-04203-w |
Abstrakt: | The standard model of particle physics is both incredibly successful and glaringly incomplete. Among the questions left open is the striking imbalance of matter and antimatter in the observable universe 1 , which inspires experiments to compare the fundamental properties of matter/antimatter conjugates with high precision 2-5 . Our experiments deal with direct investigations of the fundamental properties of protons and antiprotons, performing spectroscopy in advanced cryogenic Penning trap systems 6 . For instance, we previously compared the proton/antiproton magnetic moments with 1.5 parts per billion fractional precision 7,8 , which improved upon previous best measurements 9 by a factor of greater than 3,000. Here we report on a new comparison of the proton/antiproton charge-to-mass ratios with a fractional uncertainty of 16 parts per trillion. Our result is based on the combination of four independent long-term studies, recorded in a total time span of 1.5 years. We use different measurement methods and experimental set-ups incorporating different systematic effects. The final result, [Formula: see text], is consistent with the fundamental charge-parity-time reversal invariance, and improves the precision of our previous best measurement 6 by a factor of 4.3. The measurement tests the standard model at an energy scale of 1.96 × 10 -27 gigaelectronvolts (confidence level 0.68), and improves ten coefficients of the standard model extension 10 . Our cyclotron clock study also constrains hypothetical interactions mediating violations of the clock weak equivalence principle (WEP (© 2022. The Author(s), under exclusive licence to Springer Nature Limited.) |
Databáze: | MEDLINE |
Externí odkaz: |