Z-scheme WO 3 /PANI heterojunctions with enhanced photocatalytic activity under visible light: A depth experimental and DFT studies.

Autor: Naciri Y; Laboratoire Matériaux et Environnement LME, Faculté des Scienc'es, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Morocco; Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China. Electronic address: yassine.naciri@edu.uiz.ac.ma., Hsini A; Laboratoire Matériaux et Environnement LME, Faculté des Scienc'es, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Morocco., Bouziani A; Chemical Engineering Department, Middle East Technical University, Ankara, Turkey., Tanji K; Laboratoire de Catalyse, Matériaux et Environnement (LCME), Université Sidi Mohammed Ben Abdellah, Fès, Route d'Imouzzer, BP 2427, Fès, Morocco., El Ibrahimi B; Faculty of Applied Sciences, Ibn Zohr University, 86153, Aït Melloul, Morocco; Applied Chemistry-Physic Team, Faculty of Sciences, University of Ibn Zohr, Agadir, Morocco., Ghazzal MN; Institut de Chimie Physique (ICP), UMR-8000 CNRS/Université Paris-Saclay, Bâtiment 349, 91405, Orsay, France. Electronic address: mohamed-nawfal.ghazzal@universite-paris-saclay.fr., Bakiz B; Laboratoire Matériaux et Environnement LME, Faculté des Scienc'es, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Morocco., Albourine A; Laboratoire Matériaux et Environnement LME, Faculté des Scienc'es, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Morocco., Benlhachemi A; Laboratoire Matériaux et Environnement LME, Faculté des Scienc'es, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Morocco., Navío JA; Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092, Sevilla, Spain. Electronic address: navio@us.es., Li H; Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
Jazyk: angličtina
Zdroj: Chemosphere [Chemosphere] 2022 Apr; Vol. 292, pp. 133468. Date of Electronic Publication: 2021 Dec 30.
DOI: 10.1016/j.chemosphere.2021.133468
Abstrakt: A WO 3 @PANI heterojunction photocatalyst with a various mass ratio of polyaniline to WO 3 was obtained via the in situ oxidative deposition polymerization of aniline monomer in the presence of WO 3 powder. The characterization of WO 3 @PANI composites was carried via X-ray diffraction (XRD), scanning electron microscopy (SEM-EDS), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible diffuse reflection spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy (PL). The photocatalytic efficiency of WO 3 @PANI photocatalysts was assessed by following the decomposition of the Rhodamine B (RhB) dye under visible light irradiation (λ >420 nm). The results evidenced the high efficiency of the WO 3 @PANI (0.5 wt %) nanocomposite in the photocatalytic degradation of RhB (90% within 120 min) under visible light irradiation 3.6 times compared to pure WO 3 . The synergistic effect between PANI and WO 3 is the reason for the increased photogenerated carrier separation. The superior photocatalytic performance of the WO 3 @PANI catalyst was ascribed to the increased visible light in the visible range and the efficient charge carrier separation. Furthermore, the Density Functional Theory study (DFT) of WO 3 @PANI was performed at the molecular level, to find its internal nature for the tuning of photocatalytic efficiency. The DFT results indicated that the chemical bonds connected the solid-solid contact interfaces between WO 3 and PANI. Finally, a plausible photocatalytic mechanism of WO 3 @PANI (0.5 wt %) performance under visible light illumination is suggested to guide additional photocatalytic activity development.
(Copyright © 2021 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE