Bat point counts: A novel sampling method shines light on flying bat communities.

Autor: Darras KFA; Agroecology Department of Crop Sciences University of Göttingen Göttingen Germany.; Sustainable Agriculture & Technology Lab School of Engineering Westlake University Hangzhou China., Yusti E; EFForTS University of Jambi Jambi Indonesia., Huang JC; Southeast Asian Bat Conservation Research Unit Lubbock Texas USA., Zemp DC; Biodiversity, Macroecology and Biogeography University of Göttingen Göttingen Germany.; Laboratory of Conservation Biology Institute of Biology University of Neuchâtel Neuchâtel Switzerland., Kartono AP; Department of Forest Resources Conservation and Ecotourism Faculty of Forestry IPB University Bogor Indonesia., Wanger TC; Sustainable Agriculture & Technology Lab School of Engineering Westlake University Hangzhou China.; Key Laboratory of Coastal Environment and Resources of Zhejiang Province Westlake University Hangzhou China.; GlobalAgroforestryNetwork.org China.
Jazyk: angličtina
Zdroj: Ecology and evolution [Ecol Evol] 2021 Nov 30; Vol. 11 (23), pp. 17179-17190. Date of Electronic Publication: 2021 Nov 30 (Print Publication: 2021).
DOI: 10.1002/ece3.8356
Abstrakt: Emerging technologies based on the detection of electro-magnetic energy offer promising opportunities for sampling biodiversity. We exploit their potential by showing here how they can be used in bat point counts-a novel method to sample flying bats-to overcome shortcomings of traditional sampling methods, and to maximize sampling coverage and taxonomic resolution of this elusive taxon with minimal sampling bias. We conducted bat point counts with a sampling rig combining a thermal scope to detect bats, an ultrasound recorder to obtain echolocation calls, and a near-infrared camera to capture bat morphology. We identified bats with a dedicated identification key combining acoustic and morphological features, and compared bat point counts with the standard bat sampling methods of mist-netting and automated ultrasound recording in three oil palm plantation sites in Indonesia, over nine survey nights. Based on rarefaction and extrapolation sampling curves, bat point counts were similarly effective but more time-efficient than the established methods for sampling the oil palm species pool in our study. Point counts sampled species that tend to avoid nets and those that are not echolocating, and thus cannot be detected acoustically. We identified some bat sonotypes with near-infrared imagery, and bat point counts revealed strong sampling biases in previous studies using capture-based methods, suggesting similar biases in other regions might exist. Our method should be tested in a wider range of habitats and regions to assess its performance. However, while capture-based methods allow to identify bats with absolute and internal morphometry, and unattended ultrasound recorders can effectively sample echolocating bats, bat point counts are a promising, non-invasive, and potentially competitive new tool for sampling all flying bats without bias and observing their behavior in the wild.
Competing Interests: The authors declare to have no conflicts of interest.
(© 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.)
Databáze: MEDLINE