Influence of Sodium Hypochlorite and Chlorhexidine on the Dynamic Cyclic Fatigue Resistance of XP Endo Shaper Instruments.
Autor: | Tanomaru AA; Department of Endodontics, São Leopoldo Mandic Dental Research Center, Campinas, São Paulo, Brazil., Limoeiro AG; Department of Endodontics, Ilhéus School of Dentistry, Ilhéus, Bahia, Brazil., de Jesus Soares A; Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas- UNICAMP, Piracicaba, São Paulo, Brazil., Junior ELM; Department of Endodontics, São Leopoldo Mandic Dental Research Center, Campinas, São Paulo, Brazil., Campos GR; Department of Endodontics, São Leopoldo Mandic Dental Research Center, Campinas, São Paulo, Brazil., Hamasaki SK; Department of Endodontics, São Leopoldo Mandic Dental Research Center, Campinas, São Paulo, Brazil., Nascimento WM; Department of Endodontics, São Leopoldo Mandic Dental Research Center, Campinas, São Paulo, Brazil., Horta LM; Department of Endodontics, São Leopoldo Mandic Dental Research Center, Campinas, São Paulo, Brazil., Goulart PADSR; Department of Endodontics, São Leopoldo Mandic Dental Research Center, Campinas, São Paulo, Brazil., do Couto VR; Department of Endodontics, São Leopoldo Mandic Dental Research Center, Campinas, São Paulo, Brazil., Alves PB; Department of Endodontics, São Leopoldo Mandic Dental Research Center, Campinas, São Paulo, Brazil., Magalhães V; Department of Endodontics, São Leopoldo Mandic Dental Research Center, Campinas, São Paulo, Brazil., Campos DL; Department of Endodontics, São Leopoldo Mandic Dental Research Center, Campinas, São Paulo, Brazil., Frozoni M; Department of Endodontics, São Leopoldo Mandic Dental Research Center, Campinas, São Paulo, Brazil. |
---|---|
Jazyk: | angličtina |
Zdroj: | European journal of dentistry [Eur J Dent] 2022 Jul; Vol. 16 (3), pp. 580-584. Date of Electronic Publication: 2021 Dec 22. |
DOI: | 10.1055/s-0041-1735934 |
Abstrakt: | Objective: This study evaluated the dynamic cyclic fatigue resistance of the XP-Endo Shaper (XPS), associated with chlorhexidine digluconate (CHX) or sodium hypochlorite (NaOCl) in two different formulations: gel (G) or liquid (L). Materials and Methods: Sixty XPS were used in an artificial stainless-steel canal, and the files were fully immersed in the irrigating solution throughout the experiment until the fracture. The files were divided into six groups ( n = 10) based on the irrigation solution used: NaOCl(L), NaOCl(G), CHX(L), CHX(G), natrosol gel (NAT) (control), and lubricating oil (LO) (control). The artificial canal was manufactured 1.5 mm wide, 20 mm long, and, 3.5 mm deep with a straight cervical segment measuring 14.29 mm; an apical segment of 4.71 mm with 3 mm radius; and 90 degrees of curvature apical 1 mm long straight segment. Resistance to cyclic fatigue was determined by recording the number of cycles to fracture (NCF). Results: The CHX(G), CHX(L), and OIL (LO) groups showed no significant difference between them and presented longer time to fracture ( p > 0.05). NaOCl(L) shows the lowest NCF without significant differences between NaOCl(G) and NAT. The NCF of the NaOCl(G) was statistically similar to the CHX(L) and statistically lower than the CHX(G) and OIL groups. NAT did not present a statistical difference of the NaOCl(L), NaOCl(G), and presented a significantly lower NCF than the CHX(G) ( p < 0.01). Conclusion: The use of CHX(G) resulted in increased cyclic fatigue resistance of the XPS instruments compared to NaOCl or LO. Competing Interests: None declared. (The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).) |
Databáze: | MEDLINE |
Externí odkaz: |