Small molecules for cell reprogramming: a systems biology analysis.

Autor: Knyazer A; The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel., Bunu G; Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania., Toren D; Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania., Mracica TB; Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania., Segev Y; The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel., Wolfson M; The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel., Muradian KK; D.F. Chebotarev Institute of Gerontology of National Academy of Medical Sciences of Ukraine, Kiev, Ukraine., Tacutu R; Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania., Fraifeld VE; The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel.; D.F. Chebotarev Institute of Gerontology of National Academy of Medical Sciences of Ukraine, Kiev, Ukraine.
Jazyk: angličtina
Zdroj: Aging [Aging (Albany NY)] 2021 Dec 17; Vol. 13 (24), pp. 25739-25762. Date of Electronic Publication: 2021 Dec 17.
DOI: 10.18632/aging.203791
Abstrakt: If somatic stem cells would be able to maintain their regenerative capacity over time, this might, to a great extent, resolve rejuvenation issues. Unfortunately, the pool of somatic stem cells is limited, and they undergo cell aging with a consequent loss of functionality. During the last decade, low molecular weight compounds that are able to induce or enhance cell reprogramming have been reported. They were named "Small Molecules" (SMs) and might present definite advantages compared to the exogenous introduction of stemness-related transcription factors (e.g. Yamanaka's factors). Here, we undertook a systemic analysis of SMs and their potential gene targets. Data mining and curation lead to the identification of 92 SMs. The SM targets fall into three major functional categories: epigenetics, cell signaling, and metabolic "switchers". All these categories appear to be required in each SM cocktail to induce cell reprogramming. Remarkably, many enriched pathways of SM targets are related to aging, longevity, and age-related diseases, thus connecting them with cell reprogramming. The network analysis indicates that SM targets are highly interconnected and form protein-protein networks of a scale-free topology. The extremely high contribution of hubs to network connectivity suggests that (i) cell reprogramming may require SM targets to act cooperatively, and (ii) their network organization might ensure robustness by resistance to random failures. All in all, further investigation of SMs and their relationship with longevity regulators will be helpful for developing optimal SM cocktails for cell reprogramming with a perspective for rejuvenation and life span extension.
Databáze: MEDLINE