Catecholamines are key modulators of ventricular repolarization patterns in the ball python (Python regius).
Autor: | Boukens BJD; University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands., Joyce W; Department of Biology, Zoophysiology, Aarhus University, Aarhus, Denmark., Kristensen DL; Department of Biology, Zoophysiology, Aarhus University, Aarhus, Denmark., Hooijkaas I; University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands., Jongejan A; University of Amsterdam, Amsterdam UMC, Department of Epidemiology & Data Science, Amsterdam, The Netherlands., Wang T; Department of Biology, Zoophysiology, Aarhus University, Aarhus, Denmark., Jensen B; University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands. |
---|---|
Jazyk: | angličtina |
Zdroj: | The Journal of general physiology [J Gen Physiol] 2022 Feb 07; Vol. 154 (2). Date of Electronic Publication: 2021 Dec 15. |
DOI: | 10.1085/jgp.202012761 |
Abstrakt: | Ectothermic vertebrates experience daily changes in body temperature, and anecdotal observations suggest these changes affect ventricular repolarization such that the T-wave in the ECG changes polarity. Mammals, in contrast, can maintain stable body temperatures, and their ventricular repolarization is strongly modulated by changes in heart rate and by sympathetic nervous system activity. The aim of this study was to assess the role of body temperature, heart rate, and circulating catecholamines on local repolarization gradients in the ectothermic ball python (Python regius). We recorded body-surface electrocardiograms and performed open-chest high-resolution epicardial mapping while increasing body temperature in five pythons, in all of which there was a change in T-wave polarity. However, the vector of repolarization differed between individuals, and only a subset of leads revealed T-wave polarity change. RNA sequencing revealed regional differences related to adrenergic signaling. In one denervated and Ringer's solution-perfused heart, heating and elevated heart rates did not induce change in T-wave polarity, whereas noradrenaline did. Accordingly, electrocardiograms in eight awake pythons receiving intra-arterial infusion of the β-adrenergic receptor agonists adrenaline and isoproterenol revealed T-wave inversion in most individuals. Conversely, blocking the β-adrenergic receptors using propranolol prevented T-wave change during heating. Our findings indicate that changes in ventricular repolarization in ball pythons are caused by increased tone of the sympathetic nervous system, not by changes in temperature. Therefore, ventricular repolarization in both pythons and mammals is modulated by evolutionary conserved mechanisms involving catecholaminergic stimulation. (© 2021 Boukens et al.) |
Databáze: | MEDLINE |
Externí odkaz: |