An Alternate Approach to Military Rations for Optimal Health and Performance.

Autor: Lenferna De La Motte KA; Faculty of Health and Environmental Sciences, Human Potential Centre, Auckland University of Technology, Auckland 92006, New Zealand., Schofield G; Faculty of Health and Environmental Sciences, Human Potential Centre, Auckland University of Technology, Auckland 92006, New Zealand., Kilding H; Defence Technology Agency, New Zealand Defence Force, Auckland 0744, New Zealand., Zinn C; Faculty of Health and Environmental Sciences, Human Potential Centre, Auckland University of Technology, Auckland 92006, New Zealand.
Jazyk: angličtina
Zdroj: Military medicine [Mil Med] 2023 May 16; Vol. 188 (5-6), pp. e1102-e1108.
DOI: 10.1093/milmed/usab498
Abstrakt: Introduction: Operational ration packs are the sole source of nutrition when military personnel cannot access fresh food and field kitchens due to deployment and training in remote and hostile locations. They should be light, durable, nutrient rich, and contain sufficient energy to ensure that the personnel can carry out the expected duties. The macronutrient composition of rations has remained relatively unchanged despite escalating concerns related to the health and operational readiness of personnel globally. Currently, the New Zealand Defence Force (NZDF) provides the personnel with a 24-hour ration pack. The aims of this study were to (1) analyse the nutrient content, cost, and weight of the NZDF-supplied ration pack and (2) develop and analyse an alternate ration pack. The alternate ration pack was designed with the intention of improving overall quality and macronutrient distribution ratio, to align with optimal health and performance outcomes.
Materials and Methods: Nutrient and weight analyses of the NZDF and alternate ration packs were conducted using nutrition analysis software Foodworks V. 10 (Xyris software). The ration packs were costed using information from the NZDF and from commercial online shopping websites (particularly Countdown supermarket and an online shop, iHerb). Data from nutrition panels were entered into Foodworks V. 10 (Xyris software). The data underlying this article will be shared on reasonable request to the corresponding author.
Results: The NZDF-supplied ration pack cost 37.00 NZD and contained an excessive amount of sugar (636 g or 46% total energy) and marginally insufficient protein (118.7 g or 9% total energy) to sustain physically active military personnel. Comparatively, the alternate ration pack was more costly (63.55 NZD) and contained significantly less sugar (74.6 g or 7.2% total energy) and exceeded protein (263.1 g or 26% total energy) requirements for physically active military personnel. Furthermore, the alternate ration pack was significantly lighter (0.71 kg) than the NZDF ration pack (1.4 kg). In summary, the alternate ration was nutritionally superior and lighter when compared to the currently supplied NZDF ration, but more expensive when purchased as a one-off.
Conclusions: This work highlights the shortcomings of currently supplied military rations packs (i.e., excessive sugar and marginally inadequate protein) and proposes a novel alternate approach to ration pack formulation. This approach would significantly reduce sugar and increase protein and fat content in military rations. Although this work indicates that the alternate approach (which would produce lighter and nutritionally superior rations) is more costly, this cost could be reduced significantly through bulk purchasing and purpose-built rations and food items. Considering these findings, field user-testing of the alternate ration pack is recommended and subsequent reformulation of guidelines for ration pack development, as appropriate.
(© The Association of Military Surgeons of the United States 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje