The minicircular and extremely heteroplasmic mitogenome of the holoparasitic plant Rhopalocnemis phalloides.

Autor: Yu R; State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China., Sun C; State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China., Zhong Y; State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China., Liu Y; State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China., Sanchez-Puerta MV; IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias & Facultad de Ciencias Exactas y Naturales, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina. Electronic address: mvsanchezpuerta@fca.uncu.edu.ar., Mower JP; Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA. Electronic address: jpmower@unl.edu., Zhou R; State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China. Electronic address: zhrench@mail.sysu.edu.cn.
Jazyk: angličtina
Zdroj: Current biology : CB [Curr Biol] 2022 Jan 24; Vol. 32 (2), pp. 470-479.e5. Date of Electronic Publication: 2021 Dec 13.
DOI: 10.1016/j.cub.2021.11.053
Abstrakt: The plastid and nuclear genomes of parasitic plants exhibit deeply altered architectures, 1-13 whereas the few examined mitogenomes range from deeply altered to conventional. 14-20 To provide further insight on mitogenome evolution in parasitic plants, we report the highly modified mitogenome of Rhopalocnemis phalloides, a holoparasite in Balanophoraceae. Its mitogenome is uniquely arranged in 21 minicircular chromosomes that vary in size from 4,949 to 7,861 bp, with a total length of only 130,713 bp. All chromosomes share an identical 896 bp conserved region, with a large stem-loop that acts as the origin of replication, flanked on each side by hypervariable and semi-conserved regions. Similar minicircular structures with shared and unique regions have been observed in parasitic animals and free-living protists, 21-24 suggesting convergent structural evolution. Southern blots confirm both the minicircular structure and the replication origin of the mitochondrial chromosomes. PacBio reads provide evidence for chromosome recombination and rolling-circle replication for the R. phalloides mitogenome. Despite its small size, the mitogenome harbors a typical set of genes and introns within the unique regions of each chromosome, yet introns are the smallest among seed plants and ferns. The mitogenome also exhibits extreme heteroplasmy, predominantly involving short indels and more complex variants, many of which cause potential loss-of-function mutations for some gene copies. All heteroplasmic variants are transcribed, and functional and nonfunctional protein-coding variants are spliced and RNA edited. Our findings offer a unique perspective into how mitogenomes of parasitic plants can be deeply altered and shed light on plant mitogenome replication.
Competing Interests: Declaration of interests The authors declare no competing interests.
(Copyright © 2021 Elsevier Inc. All rights reserved.)
Databáze: MEDLINE