Small Molecule CD38 Inhibitors: Synthesis of 8-Amino- N 1-inosine 5'-monophosphate, Analogues and Early Structure-Activity Relationship.

Autor: Watt JM; Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.; Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK., Graeff R; Department of Physiology, University of Hong Kong, Hong Kong, China., Potter BVL; Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.; Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
Jazyk: angličtina
Zdroj: Molecules (Basel, Switzerland) [Molecules] 2021 Nov 26; Vol. 26 (23). Date of Electronic Publication: 2021 Nov 26.
DOI: 10.3390/molecules26237165
Abstrakt: Although a monoclonal antibody targeting the multifunctional ectoenzyme CD38 is an FDA-approved drug, few small molecule inhibitors exist for this enzyme that catalyzes inter alia the formation and metabolism of the N 1-ribosylated, Ca 2+ -mobilizing, second messenger cyclic adenosine 5'-diphosphoribose (cADPR). N 1-Inosine 5'-monophosphate ( N 1-IMP) is a fragment directly related to cADPR. 8-Substituted- N 1-IMP derivatives, prepared by degradation of cyclic parent compounds, inhibit CD38-mediated cADPR hydrolysis more efficiently than related cyclic analogues, making them attractive for inhibitor development. We report a total synthesis of the N 1-IMP scaffold from adenine and a small initial compound series that facilitated early delineation of structure-activity parameters, with analogues evaluated for inhibition of CD38-mediated hydrolysis of cADPR. The 5'-phosphate group proved essential for useful activity, but substitution of this group by a sulfonamide bioisostere was not fruitful. 8-NH 2 - N 1-IMP is the most potent inhibitor (IC 50 = 7.6 μM) and importantly HPLC studies showed this ligand to be cleaved at high CD38 concentrations, confirming its access to the CD38 catalytic machinery and demonstrating the potential of our fragment approach.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje