Autor: |
Bugallo D; Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química-Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain., Langenberg E; Department of Condensed Matter Physics, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08020 Barcelona, Spain., Carbó-Argibay E; International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal., Varela Dominguez N; Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química-Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain., Fumega AO; Departamento de Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.; Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland., Pardo V; Departamento de Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain., Lucas I; Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, 50009 Zaragoza, Spain., Morellón L; Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, 50009 Zaragoza, Spain., Rivadulla F; Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química-Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain. |
Abstrakt: |
Accessing the regime of coherent phonon propagation in nanostructures opens enormous possibilities to control the thermal conductivity in energy harvesting devices, phononic circuits, etc. In this paper we show that coherent phonons contribute substantially to the thermal conductivity of LaCoO 3 /SrTiO 3 oxide superlattices, up to room temperature. We show that their contribution can be tuned through small variations of the superlattice periodicity, without changing the total superlattice thickness. Using this strategy, we tuned the thermal conductivity by 20% at room temperature. We also discuss the role of interface mixing and epitaxial relaxation as an extrinsic, material dependent key parameter for understanding the thermal conductivity of oxide superlattices. |