Relationships between pulmonary inflammation, plasma transudation, and oxygen metabolite secretion by alveolar macrophages.

Autor: Gerberick GF, Jaffe HA, Willoughby JB, Willoughby WF
Jazyk: angličtina
Zdroj: Journal of immunology (Baltimore, Md. : 1950) [J Immunol] 1986 Jul 01; Vol. 137 (1), pp. 114-21.
Abstrakt: We have previously shown that alveolar macrophages from normal rabbit lungs do not synthesize reactive oxygen intermediates unless first conditioned by culture in vitro in the presence of serum for 24 to 48 hr. This conditioning process is mediated by a serum constituent that partitions on gel exclusion columns with an apparent m.w. of 30,000 to 50,000 daltons. Alveolar macrophage conditioning in vitro requires protein synthesis, is associated with the generation of membrane NADPH oxidase activity, and is reversible. We have predicted therefore that during the course of pulmonary inflammation, as observed 3 wk after i.v. injection of M. butyricum in oil, alveolar macrophages might similarly become conditioned in vivo through exposure to plasma protein transudates reaching the alveolus. In support of this hypothesis we show that after experimental production of granulomatous pulmonary inflammation in rabbits, alveolar macrophages showed an augmented capacity to secrete superoxide anion when stimulated with phorbol ester, and this enhancement increases exponentially with increased plasma transudation. This augmented enhancement was reversible, and decreased after culture in vitro in the absence of serum. Mature alveolar macrophages were responsible for this enhanced superoxide anion production rather than freshly emigrated monocytes. Moreover, superoxide anion production in this model of pulmonary inflammation appears to be an "all-or-none" phenomenon, with superoxide anion production associated with a subpopulation of optimally conditioned alveolar macrophages, whereas the remaining unconditioned alveolar macrophages produce little or none. We feel that these two classes of alveolar macrophages may be derived from inflamed and noninflamed regions of the lung, respectively, thereby reflecting the discontinuous nature of the inflammatory lesions themselves. Thus we propose that measurements of reactive oxygen intermediate production by lavaged alveolar macrophages may provide a semi-quantitative measure of chronic pulmonary inflammation.
Databáze: MEDLINE