Detecting crop water requirement indicators in irrigated agroecosystems from soil water content profiles: An application for a citrus orchard.

Autor: Segovia-Cardozo DA; Departamento de Ingeniería Agroforestal. E.T.S.I. Agronómica, Alimentaria y Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain. Electronic address: da.segovia@upm.es., Franco L; Irritecs.p.a., Via Gambitta Conforto, 98071 Capo D'Orlando, ME, Italy. Electronic address: loris.franco@irritec.com., Provenzano G; Department Agriculture, Food and Forest Sciences, University of Palermo, viale delle Scienze 12 Ed. 4, 90128 Palermo, Italy. Electronic address: giuseppe.provenzano@unipa.it.
Jazyk: angličtina
Zdroj: The Science of the total environment [Sci Total Environ] 2022 Feb 01; Vol. 806 (Pt 1), pp. 150492. Date of Electronic Publication: 2021 Sep 24.
DOI: 10.1016/j.scitotenv.2021.150492
Abstrakt: Most perennial crops sensitive to water scarcity, such as citrus, can benefit from efficient water management, which allows for reduced water consumption while increasing crop production on a long-term basis. However, when implementing water-saving strategies, it is necessary to monitor soil and/or plant water status in order to determine crop water demand. A plethora of devices providing indirect measurements of volumetric soil water content, such as the "drill and drop" multi-sensors probes (Sentek, Inc., Stepney, Australia), have been developed over the last decade. The objective of the paper was to analyse time-series of soil water content profiles and meteorological data collected in an adult citrus orchard over three years of field observations (2017-2020) in order to estimate actual crop evapotranspiration and derive crop coefficients. Simultaneous measurements of sap fluxes also allowed for the estimation of the basal crop coefficient, K cb , used as a control variable. The temporal dynamics of soil water content profiles following rainfall or irrigation events provided information on soil evaporation, root water uptake, and actual crop transpiration. After soil wetting events, in particular, it was possible to recognize patterns of actual crop evapotranspiration similar to those detected with sap flow sensors. The knowledge of actual crop evapotranspiration at the daily time-step, in conjunction with the corresponding reference crop evapotranspiration, allowed for appropriate estimations of the crop coefficient associated with the various development stages. The proposed method provided interesting insights into the dynamics of root water uptake and crop evapotranspiration of the studied citrus orchard, and it represents a promising tool for precise irrigation scheduling in other agroecosystems.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2021 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE