Coenzyme Q at the Hinge of Health and Metabolic Diseases.

Autor: Hernández-Camacho JD; Centro Andaluz de Biología del Desarrollo, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, 41013 Sevilla, Spain., García-Corzo L; Centro Andaluz de Biología del Desarrollo, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, 41013 Sevilla, Spain., Fernández-Ayala DJM; Centro Andaluz de Biología del Desarrollo, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, 41013 Sevilla, Spain., Navas P; Centro Andaluz de Biología del Desarrollo, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, 41013 Sevilla, Spain., López-Lluch G; Centro Andaluz de Biología del Desarrollo, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, 41013 Sevilla, Spain.
Jazyk: angličtina
Zdroj: Antioxidants (Basel, Switzerland) [Antioxidants (Basel)] 2021 Nov 08; Vol. 10 (11). Date of Electronic Publication: 2021 Nov 08.
DOI: 10.3390/antiox10111785
Abstrakt: Coenzyme Q is a unique lipidic molecule highly conserved in evolution and essential to maintaining aerobic metabolism. It is endogenously synthesized in all cells by a very complex pathway involving a group of nuclear genes that share high homology among species. This pathway is tightly regulated at transcription and translation, but also by environment and energy requirements. Here, we review how coenzyme Q reacts within mitochondria to promote ATP synthesis and also integrates a plethora of metabolic pathways and regulates mitochondrial oxidative stress. Coenzyme Q is also located in all cellular membranes and plasma lipoproteins in which it exerts antioxidant function, and its reaction with different extramitochondrial oxidoreductases contributes to regulate the cellular redox homeostasis and cytosolic oxidative stress, providing a key factor in controlling various apoptosis mechanisms. Coenzyme Q levels can be decreased in humans by defects in the biosynthesis pathway or by mitochondrial or cytosolic dysfunctions, leading to a highly heterogeneous group of mitochondrial diseases included in the coenzyme Q deficiency syndrome. We also review the importance of coenzyme Q levels and its reactions involved in aging and age-associated metabolic disorders, and how the strategy of its supplementation has had benefits for combating these diseases and for physical performance in aging.
Databáze: MEDLINE