Cladonia verticillaris (lichen) indicates negative impacts derived from the combustion of biodiesel blends: an alert for the environmental management for biofuels use.

Autor: da Silva BF; Post-Graduate Program in Applied Ecology, Center of Nuclear Energy in Agriculture, Universidade de São Paulo, Av. São Dimas, 303, 13.416-000, Piracicaba, São Paulo, Brazil., Pereira IMC; Collegiate of the Geography Degree Course, Universidade de Pernambuco, R. Cap. Pedro Rodrigues, 55.294-902, Garanhuns, Pernambuco, Brazil., de Melo JC; Biofuels Division, Northeast Strategic Technologies Center (CETENE), Av. Prof. Luís Freire, 1, 50.740-545, Recife, Pernambuco, Brazil., Martins MCB; Post-Graduate Program in Plant Biology, Department of Botany, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, 50.670-901, Recife, Pernambuco, Brazil., Barbosa MO; Post-Graduate Program in Plant Biology, Department of Botany, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, 50.670-901, Recife, Pernambuco, Brazil., Silva AKO; Department of Geographical Sciences, Post-Graduate Program in Geography, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, 50.670-901, Recife, Pernambuco, Brazil., de Siqueira WN; Department of Biophysics and Radiation Biology, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, 50.670-901, Recife, Pernambuco, Brazil., da Silva NH; Post-Graduate Program in Biochemistry and Phisiology, Department of Biochemistry, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, 50.670-901, Recife, Pernambuco, Brazil., de Oliveira AFM; Post-Graduate Program in Plant Biology, Department of Botany, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, 50.670-901, Recife, Pernambuco, Brazil., Vicente C; Department of Plant Physiology, Universidad Complutense de Madrid, Calle José Antonio Novais, 12, 28.040, Madrid, Spain., Legaz ME; Department of Plant Physiology, Universidad Complutense de Madrid, Calle José Antonio Novais, 12, 28.040, Madrid, Spain., Pereira EC; Post-Graduate Program in Plant Biology, Department of Botany, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, 50.670-901, Recife, Pernambuco, Brazil.; Department of Geographical Sciences, Post-Graduate Program in Geography, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, 50.670-901, Recife, Pernambuco, Brazil.
Jazyk: angličtina
Zdroj: Environmental monitoring and assessment [Environ Monit Assess] 2021 Nov 16; Vol. 193 (12), pp. 809. Date of Electronic Publication: 2021 Nov 16.
DOI: 10.1007/s10661-021-09610-0
Abstrakt: The use of biodiesel blends with petroleum diesel in vehicular engines demands the evaluation of the possible impacts and effects of the gases emitted from their combustion on the environment. Among studies on these questions, biomonitoring using lichens is a viable alternative, given their interactions with the elements dispersed in the atmosphere, as well as its sensitivity and capacity to retain contaminants. In this study, we analyzed the effects of gas emissions from the combustion of biodiesel mixture with petroleum diesel on Cladonia verticillaris thalli. Samples of the lichen (10 g) were exposed to the gases emitted by the exhaust of the generator engine during the combustion process of biodiesel mixtures to petroleum diesel (7% (B7), 10% (B10), 40% (B40), 50% (B50), and 70% (B70)). At 90 days after exposure, samples were analyzed for n-alkane profiles, thallus morphology, photosynthetic pigment contents, and secondary lichen metabolites (protocetraric and fumarprotocetraric acids). Sets B7 and B10 showed better resistance of the lichen to pollutants. Set B40 showed a high stress evidenced by the chain elongation of n-alkanes structure and high chlorophyll production, presenting high morphological damages when compared to the control sets, B7 and B10. The results showed significant reductions of n-alkanes profiles for mixtures with high concentrations of biodiesel (B50 and B70), as well as decreases in the chlorophyll content. These groups showed an increase in the synthesis of secondary metabolites, corroborating the hypothesis that high concentrations of biodiesel in the mixture with petroleum diesel have greater impacts on the lichen. Schematic model for demonstration of using the lichen Cladonia verticillaris as biomonitor of effects from gas emissions from the combustion of biodiesel blends with petroleum diesel by a stationary engine.
(© 2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
Databáze: MEDLINE