Efficiency of the Hydroponic System as an Approach to Confirm the Solubilization of CaHPO 4 by Microbial Strains Using Glycine max as a Model.

Autor: Reis MNO; Laboratory of Agricultural Microbiology, Instituto Federal Goiano - Rio Verde Campus, Highway Sul Goiana, Rio Verde, Brazil.; Laboratory of Plant Mineral Nutrition and CEAGRE - Exponential Agriculture Center of Excellence, Instituto Federal Goiano, Rio Verde, Brazil., Bessa LA; Laboratory of Agricultural Microbiology, Instituto Federal Goiano - Rio Verde Campus, Highway Sul Goiana, Rio Verde, Brazil.; Laboratory of Plant Mineral Nutrition and CEAGRE - Exponential Agriculture Center of Excellence, Instituto Federal Goiano, Rio Verde, Brazil., de Jesus AP; Laboratory of Agricultural Microbiology, Instituto Federal Goiano - Rio Verde Campus, Highway Sul Goiana, Rio Verde, Brazil., Guimarães Silva F; Laboratory of Plant Mineral Nutrition and CEAGRE - Exponential Agriculture Center of Excellence, Instituto Federal Goiano, Rio Verde, Brazil., Moreira MA; Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Santa Rita Experimental Field, Prudente de Morais, Brazil., Vitorino LC; Laboratory of Agricultural Microbiology, Instituto Federal Goiano - Rio Verde Campus, Highway Sul Goiana, Rio Verde, Brazil.
Jazyk: angličtina
Zdroj: Frontiers in plant science [Front Plant Sci] 2021 Oct 29; Vol. 12, pp. 759463. Date of Electronic Publication: 2021 Oct 29 (Print Publication: 2021).
DOI: 10.3389/fpls.2021.759463
Abstrakt: The sustainable development of agriculture can be stimulated by the great market availability of bio-inputs, including phosphate-solubilizing microbial strains. However, these strains are currently selected using imprecise and questionable solubilization methodologies in solid or liquid media. We hypothesized that the hydroponic system could be a more efficient methodology for selecting phosphate-solubilizing strains as plant growth promoters. This methodology was tested using the plant Glycine max as a model. The growth-promoting potential of the strains was compared with that of the Biomaphos® commercial microbial mixture. The obtained calcium phosphate (CaHPO 4 ) solubilization results using the hydroponic system were inconsistent with those observed in solid and liquid media. However, the tests in liquid medium demonstrated poor performances of Codinaeopsis sp. (328EF) and Hamigera insecticola (33EF) in reducing pH and solubilizing CaHPO 4 , which corroborates with the effects of biotic stress observed in G. max plants inoculated with these strains. Nevertheless, the hydroponic system allowed the characterization of Paenibacillus alvei (PA12), which is also efficient in solubilization in a liquid medium. The bacterium Lysinibacillus fusiformis (PA26) was the most effective in CaHPO 4 solubilization owing to the higher phosphorus (P) absorption, growth promotion, and physiological performance observed in plants inoculated with this bacterium. The hydroponic method proved to be superior in selecting solubilizing strains, allowing the assessment of multiple patterns, such as nutritional level, growth, photosynthetic performance, and anatomical variation in plants, and even the detection of biotic stress responses to inoculation, obtaining strains with higher growth promotion potential than Biomaphos®. This study proposed a new approach to confirm the solubilizing activity of microorganisms previously selected in vitro and potentially intended for the bio-input market that are useful in P availability for important crops, such as soybeans.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2021 Reis, Bessa, de Jesus, Guimarães Silva, Moreira and Vitorino.)
Databáze: MEDLINE