Enzymatic C β -H Functionalization of l-Arg and l-Leu in Nonribosomally Derived Peptidyl Natural Products: A Tale of Two Oxidoreductases.

Autor: Cui Z; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States., Nguyen H; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States., Bhardwaj M; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States., Wang X; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States., Büschleb M; Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Georg-August-University, GöTammannstr. 2, 37077 Göttingen, Germany., Lemke A; Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany., Schütz C; Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany., Rohrbacher C; Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany., Junghanns P; Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany., Koppermann S; Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany., Ducho C; Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany., Thorson JS; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States., Van Lanen SG; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States.
Jazyk: angličtina
Zdroj: Journal of the American Chemical Society [J Am Chem Soc] 2021 Nov 24; Vol. 143 (46), pp. 19425-19437. Date of Electronic Publication: 2021 Nov 12.
DOI: 10.1021/jacs.1c08177
Abstrakt: Muraymycins are peptidyl nucleoside antibiotics that contain two C β -modified amino acids, (2 S ,3 S )-capreomycidine and (2 S ,3 S )-β-OH-Leu. The former is also a component of chymostatins, which are aldehyde-containing peptidic protease inhibitors that─like muraymycin─are derived from nonribosomal peptide synthetases (NRPSs). Using feeding experiments and in vitro characterization of 12 recombinant proteins, the biosynthetic mechanism for both nonproteinogenic amino acids is now defined. The formation of (2 S ,3 S )-capreomycidine is shown to involve an FAD-dependent dehydrogenase:cyclase that requires an NRPS-bound pathway intermediate as a substrate. This cryptic dehydrogenation strategy is both temporally and mechanistically distinct in comparison to the biosynthesis of other capreomycidine diastereomers, which has previously been shown to proceed by C β -hydroxylation of free l-Arg catalyzed by a member of the nonheme Fe 2+ - and α-ketoglutarate (αKG)-dependent dioxygenase family and (eventually) a dehydration-mediated cyclization process catalyzed by a distinct enzyme(s). Contrary to our initial expectation, the sole nonheme Fe 2+ - and αKG-dependent dioxygenase candidate Mur15 encoded within the muraymycin gene cluster is instead demonstrated to catalyze specific C β hydroxylation of the Leu residue to generate (2 S ,3 S )-β-OH-Leu that is found in most muraymycin congeners. Importantly, and in contrast to known l-Arg-C β -hydroxylases, the Mur15-catalyzed reaction occurs after the NRPS-mediated assembly of the peptide scaffold. This late-stage functionalization affords the opportunity to exploit Mur15 as a biocatalyst, proof of concept of which is provided.
Databáze: MEDLINE