Acoustically induced coherent spin trapping.

Autor: Hernández-Mínguez A; Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5-7, 10117 Berlin, Germany., Poshakinskiy AV; Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia., Hollenbach M; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.; Technische Universität Dresden, 01062 Dresden, Germany., Santos PV; Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5-7, 10117 Berlin, Germany., Astakhov GV; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.
Jazyk: angličtina
Zdroj: Science advances [Sci Adv] 2021 Oct 29; Vol. 7 (44), pp. eabj5030. Date of Electronic Publication: 2021 Oct 29.
DOI: 10.1126/sciadv.abj5030
Abstrakt: Spin centers are promising qubits for quantum technologies. Here, we show that the acoustic manipulation of spin qubits in their electronic excited state provides an approach for coherent spin control inaccessible so far. We demonstrate a giant interaction between the strain field of a surface acoustic wave (SAW) and the excited-state spin of silicon vacancies in silicon carbide, which is about two orders of magnitude stronger than in the ground state. The simultaneous spin driving in the ground and excited states with the same SAW leads to the trapping of the spin along a direction given by the frequency detuning from the corresponding spin resonances. The coherence of the spin-trapped states becomes only limited by relaxation processes intrinsic to the ground state. The coherent acoustic manipulation of spins in the ground and excited state provides new opportunities for efficient on-chip quantum information protocols and coherent sensing.
Databáze: MEDLINE