Warming increased bark beetle-induced tree mortality by 30% during an extreme drought in California.

Autor: Robbins ZJ; Earth and Environmental Sciences Division (EES-14), Los Alamos National Laboratory, Los Alamos, New Mexico, USA.; Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA., Xu C; Earth and Environmental Sciences Division (EES-14), Los Alamos National Laboratory, Los Alamos, New Mexico, USA., Aukema BH; Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA., Buotte PC; Energy and Resources Group, University of California Berkeley, Berkeley, California, USA., Chitra-Tarak R; Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA., Fettig CJ; Pacific Southwest Research Station, USDA Forest Service, Davis, California, USA., Goulden ML; Department of Earth System Science, University of California, Irvine, California, USA., Goodsman DW; Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia, Canada., Hall AD; Atmospheric and Oceanic Sciences, University of California, Los Angeles, California, USA., Koven CD; Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA., Kueppers LM; Energy and Resources Group, University of California Berkeley, Berkeley, California, USA., Madakumbura GD; Atmospheric and Oceanic Sciences, University of California, Los Angeles, California, USA., Mortenson LA; Pacific Southwest Research Station, USDA Forest Service, Davis, California, USA., Powell JA; Mathematics and Statistics Department, Utah State University, Logan, Utah, USA., Scheller RM; Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA.
Jazyk: angličtina
Zdroj: Global change biology [Glob Chang Biol] 2022 Jan; Vol. 28 (2), pp. 509-523. Date of Electronic Publication: 2021 Oct 28.
DOI: 10.1111/gcb.15927
Abstrakt: Quantifying the responses of forest disturbances to climate warming is critical to our understanding of carbon cycles and energy balances of the Earth system. The impact of warming on bark beetle outbreaks is complex as multiple drivers of these events may respond differently to warming. Using a novel model of bark beetle biology and host tree interactions, we assessed how contemporary warming affected western pine beetle (Dendroctonus brevicomis) populations and mortality of its host, ponderosa pine (Pinus ponderosa), during an extreme drought in the Sierra Nevada, California, United States. When compared with the field data, our model captured the western pine beetle flight timing and rates of ponderosa pine mortality observed during the drought. In assessing the influence of temperature on western pine beetles, we found that contemporary warming increased the development rate of the western pine beetle and decreased the overwinter mortality rate of western pine beetle larvae leading to increased population growth during periods of lowered tree defense. We attribute a 29.9% (95% CI: 29.4%-30.2%) increase in ponderosa pine mortality during drought directly to increases in western pine beetle voltinism (i.e., associated with increased development rates of western pine beetle) and, to a much lesser extent, reductions in overwintering mortality. These findings, along with other studies, suggest each degree (°C) increase in temperature may have increased the number of ponderosa pine killed by upwards of 35%-40% °C -1 if the effects of compromised tree defenses (15%-20%) and increased western pine beetle populations (20%) are additive. Due to the warming ability to considerably increase mortality through the mechanism of bark beetle populations, models need to consider climate's influence on both host tree stress and the bark beetle population dynamics when determining future levels of tree mortality.
(© 2021 John Wiley & Sons Ltd.)
Databáze: MEDLINE