Mysterious oil spill on the Brazilian coast - Part 2: A probabilistic approach to fill gaps of uncertainties.
Autor: | Zacharias DC; Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão, 1226, São Paulo, SP 05508-090, Brazil. Electronic address: danizach@gmail.com., Gama CM; Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão, 1226, São Paulo, SP 05508-090, Brazil., Harari J; Departamento de Oceanografia Física, Química e Geológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo, SP 05508-900, Brazil., da Rocha RP; Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão, 1226, São Paulo, SP 05508-090, Brazil., Fornaro A; Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão, 1226, São Paulo, SP 05508-090, Brazil. |
---|---|
Jazyk: | angličtina |
Zdroj: | Marine pollution bulletin [Mar Pollut Bull] 2021 Dec; Vol. 173 (Pt B), pp. 113085. Date of Electronic Publication: 2021 Oct 25. |
DOI: | 10.1016/j.marpolbul.2021.113085 |
Abstrakt: | Over 5000 tons of spilled oil reached the northeast coast of Brazil in 2019. The Laboratory for Computational Methods in Engineering (LAMCE/COPPE/UFRJ) employed time-reverse modeling and identify multiple potential source areas. As time-reverse modeling has many uncertainties, this article carried out a methodology study to mitigate them. A probabilistic modeling using Monte Carlo approach was developed to test these source areas with the Spill, Transport, and Fate Model (STFM) and a scenario tree methodology was used to select possible spill scenarios. To estimate the performance of Lagrangian models, two new model performance evaluations were added to Chang and Hanna (2004). The combination of probabilistic simulations, scenario tree analysis, and model performance evaluation proved to be a powerful tool for mitigating the uncertainties of time-reverse modeling, yielding good results and simple implementation. (Copyright © 2021 Elsevier Ltd. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |