Autor: |
Munoz G; Département de Chimie, Université de Montréal, Montréal, Quebec H2 V 0B3, Canada., Michaud AM; INRAE, UMR ECOSYS, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France.; INRAE, UMR SAS, Sol Agro et hydrosystème Spatialisation, 35000 Rennes, France., Liu M; Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada., Vo Duy S; Département de Chimie, Université de Montréal, Montréal, Quebec H2 V 0B3, Canada., Montenach D; INRAE, UE UEAV, Unité d'expérimentation agronomique et viticole, 68000 Colmar, France., Resseguier C; INRAE, UMR ECOSYS, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France., Watteau F; INRAE, Laboratoire Sols et Environnement, Université de Lorraine, 54000 Nancy, France., Sappin-Didier V; INRAE, UMR ISPA, Interactions Sol Plante Atmosphère, Bordeaux Sciences Agro, 33140 Villenave d'Ornon, France., Feder F; CIRAD, UPR Recyclage et risque, 97408 Saint-Denis, Réunion France.; CIRAD, UPR Recyclage et risque, Université de Montpellier, 34398 Montpellier, France., Morvan T; INRAE, UMR SAS, Sol Agro et hydrosystème Spatialisation, 35000 Rennes, France., Houot S; INRAE, UMR ECOSYS, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France., Desrosiers M; Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement et de la Lutte contre les changements climatiques, Québec, QC G1P 3W8, Canada., Liu J; Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada., Sauvé S; Département de Chimie, Université de Montréal, Montréal, Quebec H2 V 0B3, Canada. |
Abstrakt: |
Zwitterionic, cationic, and anionic per- and polyfluoroalkyl substances (PFAS) are increasingly reported in terrestrial and aquatic environments, but their inputs to agricultural lands are not fully understood. Here, we characterized PFAS in 47 organic waste products (OWP) applied in agricultural fields of France, including historical and recent materials. Overall, 160 PFAS from 42 classes were detected from target screening and homologue-based nontarget screening. Target PFAS were low in agriculture-derived wastes such as pig slurry, poultry manure, or dairy cattle manure (median ∑ 46 PFAS: 0.66 μg/kg dry matter). Higher PFAS levels were reported in urban and industrial wastes, paper mill sludge, sewage sludge, or residual household waste composts (median ∑ 46 PFAS: 220 μg/kg). Historical municipal biosolids and composts (1976-1998) were dominated by perfluorooctanesulfonate (PFOS), N -ethyl perfluorooctanesulfonamido acetic acid (EtFOSAA), and cationic and zwitterionic electrochemical fluorination precursors to PFOS. Contemporaneous urban OWP (2009-2017) were rather dominated by zwitterionic fluorotelomers, which represented on average 55% of ∑ 160 PFAS (max: 97%). The fluorotelomer sulfonamidopropyl betaines (X:2 FTSA-PrB, median: 110 μg/kg, max: 1300 μg/kg) were the emerging class with the highest occurrence and prevalence in contemporary urban OWP. They were also detected as early as 1985. The study informs for the first time that urban sludges and composts can be a significant repository of zwitterionic and cationic PFAS. |