Using Deep-Learning Algorithms to Simultaneously Identify Right and Left Ventricular Dysfunction From the Electrocardiogram.

Autor: Vaid A; Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Johnson KW; Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Badgeley MA; Neurable Inc, Boston, Massachusetts, USA., Somani SS; The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Bicak M; The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Landi I; Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Russak A; Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Zhao S; The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Levin MA; Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Freeman RS; Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Institute for Healthcare Delivery Science, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Charney AW; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Kukar A; Department of Cardiology, Mount Sinai Queens Hospital, Astoria, New York, USA, and Icahn School of Medicine at Mount Sinai, New York, New York, USA; Division of Cardiology, Mount Sinai West Hospital and Icahn School of Medicine at Mount Sinai, New York, New York USA., Kim B; Mount Sinai Beth Israel Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Danilov T; Department of Cardiology, Mount Sinai Morningside Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Lerakis S; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Argulian E; Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Narula J; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Nadkarni GN; Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Glicksberg BS; Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA. Electronic address: benjamin.glicksberg@mssm.edu.
Jazyk: angličtina
Zdroj: JACC. Cardiovascular imaging [JACC Cardiovasc Imaging] 2022 Mar; Vol. 15 (3), pp. 395-410. Date of Electronic Publication: 2021 Oct 13.
DOI: 10.1016/j.jcmg.2021.08.004
Abstrakt: Objectives: This study sought to develop DL models capable of comprehensively quantifying left and right ventricular dysfunction from ECG data in a large, diverse population.
Background: Rapid evaluation of left and right ventricular function using deep learning (DL) on electrocardiograms (ECGs) can assist diagnostic workflow. However, DL tools to estimate right ventricular (RV) function do not exist, whereas those to estimate left ventricular (LV) function are restricted to quantification of very low LV function only.
Methods: A multicenter study was conducted with data from 5 New York City hospitals: 4 for internal testing and 1 serving as external validation. We created novel DL models to classify left ventricular ejection fraction (LVEF) into categories derived from the latest universal definition of heart failure, estimate LVEF through regression, and predict a composite outcome of either RV systolic dysfunction or RV dilation.
Results: We obtained echocardiogram LVEF estimates for 147,636 patients paired to 715,890 ECGs. We used natural language processing (NLP) to extract RV size and systolic function information from 404,502 echocardiogram reports paired to 761,510 ECGs for 148,227 patients. For LVEF classification in internal testing, area under curve (AUC) at detection of LVEF ≤40%, 40% < LVEF ≤50%, and LVEF >50% was 0.94 (95% CI: 0.94-0.94), 0.82 (95% CI: 0.81-0.83), and 0.89 (95% CI: 0.89-0.89), respectively. For external validation, these results were 0.94 (95% CI: 0.94-0.95), 0.73 (95% CI: 0.72-0.74), and 0.87 (95% CI: 0.87-0.88). For regression, the mean absolute error was 5.84% (95% CI: 5.82%-5.85%) for internal testing and 6.14% (95% CI: 6.13%-6.16%) in external validation. For prediction of the composite RV outcome, AUC was 0.84 (95% CI: 0.84-0.84) in both internal testing and external validation.
Conclusions: DL on ECG data can be used to create inexpensive screening, diagnostic, and predictive tools for both LV and RV dysfunction. Such tools may bridge the applicability of ECGs and echocardiography and enable prioritization of patients for further interventions for either sided failure progressing to biventricular disease.
Competing Interests: Funding Support and Author Disclosures This study was supported by the National Center for Advancing Translational Sciences, National Institutes of Health (U54 TR001433-05). This study has been approved by the institutional review board at the Icahn School of Medicine at Mount Sinai. Dr Nadkarni is supported by National Institutes of Health grants: R01DK127139 from NIDDK and R01HL155915 from NHLBI. Dr Somani is a co-founder of and owns equity in Monogram Orthopedics. Dr Johnson is an employee of Tempus, Inc. Dr Nadkarni is a scientific co-founder, consultant, advisory board member, and equity owner of Renalytix AI; a scientific co-founder and equity holder for Pensieve Health; a consultant for Variant Bio; and received grants from Goldfinch Bio and personal fees from Renalytix AI, BioVie, Reata, AstraZeneca, and GLG Consulting. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.
(Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.)
Databáze: MEDLINE