Trans-resveratrol electrochemical detection using portable device based on unmodified screen-printed electrode.
Autor: | Klein RS; Laboratório de Materiais, Macromoleculas e Compósitos (LaMMAC), Universidade Tecnológica Federal do Paraná (UTFPR), Rua Marcílio Dias 635, 86812-460 Apucarana, State of Paraná, Brazil; Group of Polymeric Materials and Composites (GMPC), Department of Chemistry, State University of Maringá (UEM), 87020-900, Maringá, PR, Brazil., Taniguchi MM; Laboratório de Materiais e Sensores (LMSEN), Universidade Estadual de Maringá (UEM), Av colombo 5790, 87020-900, Maringá, State of Paraná, Brazil., Dos Santos PD; Grupo Aple-A, Programa de Pós-Graduação em Química, Universidade Estadual de Maringá (UEM), Ac Colombo 5790, 87020-900, Maringá, State of Paraná, Brazil., Bonafe EG; Laboratório de Materiais, Macromoleculas e Compósitos (LaMMAC), Universidade Tecnológica Federal do Paraná (UTFPR), Rua Marcílio Dias 635, 86812-460 Apucarana, State of Paraná, Brazil., Martins AF; Laboratório de Materiais, Macromoleculas e Compósitos (LaMMAC), Universidade Tecnológica Federal do Paraná (UTFPR), Rua Marcílio Dias 635, 86812-460 Apucarana, State of Paraná, Brazil., Monteiro JP; Laboratório de Materiais, Macromoleculas e Compósitos (LaMMAC), Universidade Tecnológica Federal do Paraná (UTFPR), Rua Marcílio Dias 635, 86812-460 Apucarana, State of Paraná, Brazil. Electronic address: johnymonteiro@utfpr.edu.br. |
---|---|
Jazyk: | angličtina |
Zdroj: | Journal of pharmaceutical and biomedical analysis [J Pharm Biomed Anal] 2022 Jan 05; Vol. 207, pp. 114399. Date of Electronic Publication: 2021 Oct 07. |
DOI: | 10.1016/j.jpba.2021.114399 |
Abstrakt: | Trans-resveratrol (t-RESV) is an important and natural polyphenolic antioxidant generally found in grapes and in its derivatives such as red wine and grape juices. The t-RESV has been explored in the pharmaceutical industry for its anti-inflammatory, anti-cancer, and neuroprotective properties. The t-RESV electrochemical determination has basically been carried out using modified electrodes-based sensors. Although these devices show good analytical performance, the electrode preparation can be laborious, and the devices may lack reproducibility. In this sense, it was proposed here a new methodology for the t-RESV electrochemical detection using unmodified screen-printed electrodes and differential pulse voltammetry (DPV). The response of the anodic signal has optimized varying the most important parameters of DPV (pulse time, pulse potential, and pulse step) using the response surface methodology. We showed based on analysis of variance that the new mathematical model developed can predict responses for the t-RESV using DPV. Furthermore, the new analytical method was validated from the limits of detection and quantification. We have still shown that t-RESV can be quantified in commercial drug using DPV with the optimized parameters. The selectivity test also showed that the sensor can be used to determine the antioxidant in other more complex matrices. Additionally, the proposed electrochemical system is completely portable and can work with its own energy, which facilitates point-of-care analysis. Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2021 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |