Betulinic acid and its spray dried microparticle formulation: In vitro PDT effect against ovarian carcinoma cell line and in vivo plasma and tumor disposition.
Autor: | Serain AF; Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Biologia Vegetal, PPG BTPB, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil. Electronic address: ale.serain@gmail.com., Morosi L; Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy., Ceruti T; Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy., Matteo C; Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy., Meroni M; Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy., Minatel E; Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil., Zucchetti M; Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy., Salvador MJ; Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Biologia Vegetal, PPG BTPB, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil. Electronic address: marcosjs@unicamp.br. |
---|---|
Jazyk: | angličtina |
Zdroj: | Journal of photochemistry and photobiology. B, Biology [J Photochem Photobiol B] 2021 Nov; Vol. 224, pp. 112328. Date of Electronic Publication: 2021 Oct 03. |
DOI: | 10.1016/j.jphotobiol.2021.112328 |
Abstrakt: | The race against ovarian cancer continue to motivate the research worldwide. It is known that many antitumor drugs have limited penetration into solid tumor tissues due to its microenvironment, thus contributing to their low efficacy. Therapeutic modalities have been exploited to elicit antitumor effects based on microenvironment of tumor, including Photodynamic therapy (PDT). Prospection of natural small molecules and nanotechnology are important tools in the development of new ways of obtaining photoactive compounds that are biocompatible. The Betulinic acid (BA) has shown potential biological effect as bioactive drug, but it has low water solubility. Thus, in the present study, owing to the poor solubility of the BA, its free form (BAF) was compared to a spray dried microparticle betulinic acid/HP-β-CD formulation (BAC) aiming to assess the BAF and BAC efficacy as a photosensitizer in PDT for application in ovarian cancer. BAF and BAC were submitted to assays in the presence of LED (λ = 420 nm) under different conditions (2.75 J/cm 2 , 5.5 J/cm 2 , and 11 J/cm 2 ) and in absence of irradiation, after 5 min or 4 h of contact with ovarian carcinoma cells (A2780) or fibroblast murine cells (3T3). Furthermore, HPLC-MS/MS and MALDI-MSI methods were developed and validated in plasma and tumor of mice proving suitable for in vivo studies. The results found a greater photoinduced cytotoxic effect for the BAC at low concentration for A2780 when irradiated with LED with similar results for fluorescence microscopy. The results motivate us to continue the studies with the BA as a potential antitumor bioactive compound. (Copyright © 2021 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |