Ultrafast and stable planar photodetector based on SnS 2 nanosheets/perovskite structure.

Autor: Shooshtari L; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran., Esfandiar A; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran. esfandiar@physics.sharif.edu., Orooji Y; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China., Samadpour M; Department of Physics, K.N. Toosi University of Technology, 15418-49611, Tehran, Iran., Rahighi R; SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, Seobu-ro, Jangan-gu, 2066, Suwon, Gyeonggi-do, 16419, Republic of Korea.
Jazyk: angličtina
Zdroj: Scientific reports [Sci Rep] 2021 Sep 29; Vol. 11 (1), pp. 19353. Date of Electronic Publication: 2021 Sep 29.
DOI: 10.1038/s41598-021-98788-x
Abstrakt: Two-dimensional (2D) transition metal dichalcogenides are promising candidates of photodetectors where they are commonly grown parallel to the substrate due to their 2D characteristics in micrometer scales from exfoliation of bulk crystals or through high temperature chemical vapor deposition (CVD) methods. In this study, semi-hexagonal vertical nanosheets of SnS 2 layered have been fabricated on FTO substrate without using Sn source through CVD method at relatively low temperature (500 °C). Due to exceptional band alignment of triple cation lead perovskite (TCLP) with semi-hexagonal SnS 2 nanosheets, an improved photodetector has been fabricated. This type of photodetectors fabricated through lithography-free and electrodes metallization free approach with remarkable fast response (20.7 µs/31.4 µs as rising /falling times), showed high photoresponsivity, external quantum efficiency and detectivity of 1.84 AW -1 , 513% and 1.69 × 10 11 , respectively under illumination of incident light with wavelength of 445 nm. The stability of the photodetectors has been studied utilizing a protective PMMA layer on the perovskite layer in 100% humidity. The introduced growth and fabrication process of the planar photodetector, including one/two dimensional interface through the edges/basal planes of layered materials with perovskite film, paves a way for the large scale, cost-effective and high-performance optoelectronic devices.
(© 2021. The Author(s).)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje