Multiple Breeds and Countries' Predictions of Mineral Contents in Milk from Milk Mid-Infrared Spectrometry.

Autor: Christophe OS; Walloon Agricultural Research Center (CRA-W), 24 Chaussée de Namur, 5030 Gembloux, Belgium., Grelet C; Walloon Agricultural Research Center (CRA-W), 24 Chaussée de Namur, 5030 Gembloux, Belgium., Bertozzi C; Elevéo Asbl, AWE Group, 4, Rue des Champs Elysées, 5590 Ciney, Belgium., Veselko D; Comité du Lait de Battice Route de Herve 104, 4651 Battice, Belgium., Lecomte C; France Conseil Elevage, Maison du Lait, 42 Rue de Chateaudun, 75009 Paris, France., Höeckels P; Landeskontrollverband Nordrhein-Westfalen e.V., Bischofstraße 85, 47809 Krefeld, Germany., Werner A; LKV Baden Württemberg, Heinrich-Baumann Str. 1-3, 70190 Stuttgart, Germany., Auer FJ; LKV Austria Gemeinnützige GmbH, Dresdnerstr. 89/B1/18, 1200 Wien, Austria., Gengler N; Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium., Dehareng F; Walloon Agricultural Research Center (CRA-W), 24 Chaussée de Namur, 5030 Gembloux, Belgium., Soyeurt H; Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium.
Jazyk: angličtina
Zdroj: Foods (Basel, Switzerland) [Foods] 2021 Sep 21; Vol. 10 (9). Date of Electronic Publication: 2021 Sep 21.
DOI: 10.3390/foods10092235
Abstrakt: Measuring the mineral composition of milk is of major interest in the dairy sector. This study aims to develop and validate robust multi-breed and multi-country models predicting the major minerals through milk mid-infrared spectrometry using partial least square regressions. A total of 1281 samples coming from five countries were analyzed to obtain spectra and in ICP-AES to measure the mineral reference contents. Models were built from records coming from four countries ( n = 1181) and validated using records from the fifth country, Austria ( n = 100). The importance of including local samples was tested by integrating 30 Austrian samples in the model while validating with the remaining 70 samples. The best performances were achieved using this second set of models, confirming the need to cover the spectral variability of a country before making a prediction. Validation root mean square errors were 54.56, 63.60, 7.30, 59.87, and 152.89 mg/kg for Na, Ca, Mg, P, and K, respectively. The built models were applied on the Walloon milk recording large-scale spectral database, including 3,510,077. The large-scale predictions on this dairy herd improvement database provide new insight regarding the minerals' variability in the population, as well as the effect of parity, stage of lactation, breeds, and seasons.
Databáze: MEDLINE