Changes in the fatty acid composition of pine needle lipids under the aluminum smelter emissions.

Autor: Kalugina OV; The Natural and Anthropogenic Ecosystems Laboratory, Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, Lermontov str., 132, 664033, Irkutsk, Russia., Mikhailova TA; The Natural and Anthropogenic Ecosystems Laboratory, Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, Lermontov str., 132, 664033, Irkutsk, Russia., Afanasyeva LV; Laboratory of Floristics and Geobotany, Institute of General and Experimental Biology Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Russia, 6, Sakhyanova str., 670047, Ulan-Ude, Russia. afanl@mail.ru., Gurina VV; Laboratory of Plant Cell Physiology, Siberian Instititue of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, Lermontov str., 132, 664033, Irkutsk, Russia., Ivanova MV; Laboratory of Ecosystems Bioindication, Siberian Instititue of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, Lermontov str., 132, 664033, Irkutsk, Russia.
Jazyk: angličtina
Zdroj: Ecotoxicology (London, England) [Ecotoxicology] 2021 Dec; Vol. 30 (10), pp. 2083-2095. Date of Electronic Publication: 2021 Sep 21.
DOI: 10.1007/s10646-021-02479-2
Abstrakt: Changes in the fatty acid (FA) composition of total lipids of Pinus sylvestris needles at different pollution levels caused by emissions from a large aluminum smelter (BrAS) have been studied. In the needles of trees from unpolluted (background) territories, the FA spectrum is represented by 24 acids with prevalence of unsaturated FAs (71.6%). The main unsaturated FA are represented by oleic (C18: 1ω9), linoleic (C18: 2ω6), and α-linolenic (C18: 3ω3) acids. Under the influence of BrAS emissions, the total amount of identified FAs in the needles and the proportion of unsaturated FAs decrease, while the fraction of saturated FAs, on the contrary, increases from 25.4% in unpolluted needles to 33.2% in polluted ones. The content of palmitic FA (C16:0) in the needles exceeds background values by 1.5 times, behenic acid (C22:0) - by 1.6-2.5 times, arachidic acid (C20:0) - by 1.5 times, palmitic margaric acid (C17:0) - by 1.5-2.3 times. These FAs play the important role in the protection of plant membranes from the effects of abiotic stress factors, making them less permeable. The sum of short-chain saturated FAs (C12:0, C14:0, C15:0) increase by 4.8 times in needles of trees that are highly polluted. Pentadecanoic (C15:0) acid is found in the needles only in the background areas and at the low pollution level. With a more severe pollution, C15:0 is not identified, but lauric acid with the cis-configuration of double bonds in the structure (izo-C12:0) appears. The presence of "relict" ∆5-polymethylene FAs in the composition of pine needle membrane lipids is determined. In the background areas, they account for 12.9% of the total FAs. With the industrial pollution intensification, their total content increases and reaches 14.1%. ∆5-polymethylene FAs are also able to protect membranes against negative influences. Thus, changes in the quantitative and qualitative FA composition of pine needle total lipids indicate the activation of the stabilization mechanisms of membrane lipids due to their tight packing in a bilayer. It is one of the adaptive reactions of Pinus sylvestris in response to the impact of the aluminum industry emissions.
(© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
Databáze: MEDLINE