Hyaluronidases and hyaluronate lyases: From humans to bacteriophages.
Autor: | Sindelar M; Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic., Jilkova J; Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic., Kubala L; Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 65691, Brno, Czech Republic., Velebny V; Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic., Turkova K; Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 65691, Brno, Czech Republic. Electronic address: turkova@ibp.cz. |
---|---|
Jazyk: | angličtina |
Zdroj: | Colloids and surfaces. B, Biointerfaces [Colloids Surf B Biointerfaces] 2021 Dec; Vol. 208, pp. 112095. Date of Electronic Publication: 2021 Sep 02. |
DOI: | 10.1016/j.colsurfb.2021.112095 |
Abstrakt: | Hyaluronan is a non-sulfated negatively-charged linear polymer distributed in most parts of the human body, where it is located around cells in the extracellular matrix of connective tissues and plays an essential role in the organization of tissue architecture. Moreover, hyaluronan is involved in many biological processes and used in many clinical, cosmetic, pharmaceutic, and biotechnological applications worldwide. As interest in hyaluronan applications increases, so does interest in hyaluronidases and hyaluronate lyases, as these enzymes play a major part in hyaluronan degradation. Many hyaluronidases and hyaluronate lyases produced by eukaryotic cells, bacteria, and bacteriophages have so far been described and annotated, and their ability to cleave hyaluronan has been experimentally proven. These enzymes belong to several carbohydrate-active enzyme families, share very low sequence identity, and differ in their cleaving mechanisms and in their structural and functional properties. This review presents a summary of annotated and characterized hyaluronidases and hyaluronate lyases isolated from different sources belonging to distinct protein families, with a main focus on the binding and catalytic residues of the discussed enzymes in the context of their biochemical properties. In addition, the application potential of individual groups of hyaluronidases and hyaluronate lyases is evaluated. (Copyright © 2021 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |