Combined Arrhenius-Merz Law Describing Domain Relaxation in Type-II Multiferroics.

Autor: Stein J; II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany., Biesenkamp S; II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany., Cronert T; II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany., Fröhlich T; II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany., Leist J; Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstraße 6, 37077 Göttingen, Germany., Schmalzl K; Juelich Centre for Neutron Science JCNS, Forschungszentrum Juelich GmbH, Outstation at ILL, 38042 Grenoble, France., Komarek AC; II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany.; Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, D-01187 Dresden, Germany., Braden M; II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany.
Jazyk: angličtina
Zdroj: Physical review letters [Phys Rev Lett] 2021 Aug 27; Vol. 127 (9), pp. 097601.
DOI: 10.1103/PhysRevLett.127.097601
Abstrakt: Electric fields were applied to multiferroic TbMnO_{3} single crystals to control the chiral domains, and the domain relaxation was studied over 8 decades in time by means of polarized neutron scattering. A surprisingly simple combination of an activation law and the Merz law describes the relaxation times in a wide range of electric field and temperature with just two parameters, an activation-field constant and a characteristic time representing the fastest possible inversion. Over the large part of field and temperature values corresponding to almost 6 orders of magnitude in time, multiferroic domain inversion is thus dominated by a single process, the domain wall motion. Only when approaching the multiferroic transition other mechanisms yield an accelerated inversion.
Databáze: MEDLINE