Multi-ion imprinted polymers (MIIPs) for simultaneous extraction and preconcentration of Sb(III), Te(IV), Pb(II) and Cd(II) ions from drinking water sources.
Autor: | Jakavula S; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair Initiative (SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa., Biata NR; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair Initiative (SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa; DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein 2028, South Africa., Dimpe KM; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein 2028, South Africa., Pakade VE; Department of Chemistry, Vaal University of Technology, Private Bag X 021, Vanderbijlpark, South Africa., Nomngongo PN; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair Initiative (SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa; DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein 2028, South Africa. Electronic address: pnnomngongo@uj.ac.za. |
---|---|
Jazyk: | angličtina |
Zdroj: | Journal of hazardous materials [J Hazard Mater] 2021 Aug 15; Vol. 416, pp. 126175. Date of Electronic Publication: 2021 May 24. |
DOI: | 10.1016/j.jhazmat.2021.126175 |
Abstrakt: | Simultaneous extraction and preconcentration of several potentially toxic metal ions have received great attention because of their toxicological effects on aquatic life and human beings. Multi-ion imprinted polymers (MIIP) have proved to be promising adsorbents with excellent specific recognition performance than single-ion imprinted polymer. Therefore, in this study, the MIIP strategy was employed for simultaneous extraction and enrichment of Sb(III), Cd(II), Pb(II) and Te(IV) ions from drinking water sources. MIIPs was used as a sorbent material in ultrasound-assisted dispersive solid phase extraction combined with inductively coupled plasma optical emission spectrometry (UA-DSPE/ICP-OES). The experimental parameters that affect the extraction efficiency and recovery of Sb(III), Cd(II), Pb(II) and Te(IV) were investigated using response surface methodology. Under optimum conditions, the enhancement factors, linear range, limit of detection (LOD) and limit of quantification (LOQ) were 37.7-51.1, 0.04-100 µg L -1 , 0.011-0.28 µg L -1 , 0.037-093 µg L -1 , respectively. The intra-day (n = 10) and inter-day (n = 5) precision expressed as relative standard deviations (%RSDs,) were 3% and 5%, respectively. The proposed UA-DSPE/ICP-OES method was applied for preconcentration and determination of the trace metal ions in environmental samples. Furthermore, the accuracy of the method was evaluated using spiked recovery experiments and the percentage recoveries ranged from 95% to 99.3%. (Copyright © 2021 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |