Using Constrained Factor Mixture Analysis to Validate Mixed-Worded Psychological Scales: The Case of the Rosenberg Self-Esteem Scale in the Dominican Republic.
Autor: | García-Batista ZE; School of Psychology, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros, Dominican Republic., Guerra-Peña K; School of Psychology, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros, Dominican Republic., Garrido LE; School of Psychology, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros, Dominican Republic., Cantisano-Guzmán LM; School of Psychology, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros, Dominican Republic., Moretti L; School of Psychology, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros, Dominican Republic.; Faculty of Psychology, Universidad Siglo 21, Córdoba, Argentina., Cano-Vindel A; Faculty of Psychology, Universidad Complutense de Madrid, Madrid, Spain., Arias VB; Faculty of Psychology, Universidad de Salamanca, Salamanca, Spain., Medrano LA; School of Psychology, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros, Dominican Republic.; Faculty of Psychology, Universidad Siglo 21, Córdoba, Argentina. |
---|---|
Jazyk: | angličtina |
Zdroj: | Frontiers in psychology [Front Psychol] 2021 Aug 19; Vol. 12, pp. 636693. Date of Electronic Publication: 2021 Aug 19 (Print Publication: 2021). |
DOI: | 10.3389/fpsyg.2021.636693 |
Abstrakt: | A common method to collect information in the behavioral and health sciences is the self-report. However, the validity of self-reports is frequently threatened by response biases, particularly those associated with inconsistent responses to positively and negatively worded items of the same dimension, known as wording effects. Modeling strategies based on confirmatory factor analysis have traditionally been used to account for this response bias, but they have recently become under scrutiny due to their incorrect assumption of population homogeneity, inability to recover uncontaminated person scores or preserve structural validities, and their inherent ambiguity. Recently, two constrained factor mixture analysis (FMA) models have been proposed by Arias et al. (2020) and Steinmann et al. (2021) that can be used to identify and screen inconsistent response profiles. While these methods have shown promise, tests of their performance have been limited and they have not been directly compared. Thus the objective of the current study was to assess and compare their performance with data from the Dominican Republic of the Rosenberg Self-Esteem Scale ( N = 632). Additionally, as this scale had not yet been studied for this population, another objective was to show how using constrained FMAs could help in the validation of mixed-worded scales. The results indicated that removing the inconsistent respondents identified by both FMAs (≈8%) reduced the amount of wording effects in the database. However, whereas the Steinmann et al. method only cleaned the data partially, the Arias et al. (2020) method was able to remove the great majority of the wording effects variance. Based on the screened data with the Arias et al. method, we evaluated the psychometric properties of the RSES for the Dominican population, and the results indicated that the scores had good validity and reliability properties. Given these findings, we recommend that researchers incorporate constrained FMAs into their toolbox and consider using them to screen out inconsistent respondents to mixed-worded scales. Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. (Copyright © 2021 García-Batista, Guerra-Peña, Garrido, Cantisano-Guzmán, Moretti, Cano-Vindel, Arias and Medrano.) |
Databáze: | MEDLINE |
Externí odkaz: |