Metagenomic analysis of MWWTP effluent treated via solar photo-Fenton at neutral pH: Effects upon microbial community, priority pathogens, and antibiotic resistance genes.

Autor: Vilela PB; Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Sanitária e Ambiental, Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Av. Pres. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil., Mendonça Neto RP; Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Sanitária e Ambiental, Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Av. Pres. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Pampulha, Belo Horizonte, MG, Brazil., Starling MCVM; Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Sanitária e Ambiental, Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Av. Pres. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil., da S Martins A; Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Sanitária e Ambiental, Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Av. Pres. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil., Pires GFF; Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Sanitária e Ambiental, Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Av. Pres. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil., Souza FAR; Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Sanitária e Ambiental, Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Av. Pres. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil., Amorim CC; Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Sanitária e Ambiental, Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Av. Pres. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil. Electronic address: camila@desa.ufmg.br.
Jazyk: angličtina
Zdroj: The Science of the total environment [Sci Total Environ] 2021 Dec 20; Vol. 801, pp. 149599. Date of Electronic Publication: 2021 Aug 12.
DOI: 10.1016/j.scitotenv.2021.149599
Abstrakt: The effectiveness of advanced technologies on eliminating antibiotic resistant bacteria (ARB) and resistance genes (ARGs) from wastewaters have been recently investigated. Solar photo-Fenton has been proven effective in combating ARB and ARGs from Municipal Wastewater Treatment Plant effluent (MWWTPE). However, most of these studies have relied solely on cultivable methods to assess ARB removal. This is the first study to investigate the effect of solar photo-Fenton upon ARB and ARGs in MWWTPE by high throughput metagenomic analysis (16S rDNA sequencing and Whole Genome Sequencing). Treatment efficiency upon priority pathogens and resistome profile were also investigated. Solar photo-Fenton (30 mg L -1 of Fe 2+ intermittent additions and 50 mg L -1 of H 2 O 2 ) reached 76-86% removal of main phyla present in MWWTPE. An increase in Proteobacteria abundance was observed after solar photo-Fenton and controls in which H 2 O 2 was present as an oxidant (Fenton, H 2 O 2 only, solar/H 2 O 2 ). Hence, tolerance mechanisms presented by this group should be further assessed. Solar photo-Fenton achieved complete removal of high priority Staphylococcus and Enterococcus, as well as Klebsiella pneumoniae and Pseudomonas aeruginosa. Substantial reduction of intrinsically multi-drug resistant bacteria was detected. Solar photo-Fenton removed nearly 60% of ARGs associated with sulfonamides, macrolides, and tetracyclines, and complete removal of ARGs related to β-lactams and fluoroquinolones. These results indicate the potential of using solar-enhanced photo-Fenton to limit the spread of antimicrobial resistance, especially in developing tropical countries.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.)
Databáze: MEDLINE