Nanocatalysts for High Selectivity Enyne Cyclization: Oxidative Surface Reorganization of Gold Sub-2-nm Nanoparticle Networks.
Autor: | Nasrallah HO; Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France., Min Y; LCC-CNRS, Université de Toulouse, INPT, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France., Lerayer E; Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France., Nguyen TA; Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France., Poinsot D; Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France., Roger J; Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France., Brandès S; Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France., Heintz O; Laboratoire Interdisciplinaire Carnot Bourgogne (ICB - UMR CNRS 6303), Université Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary 21078, Dijon, France., Roblin P; Laboratoire de Génie Chimique and Fédération de Recherche FERMAT, 4 allée Emile Monso, 31030 Toulouse, France., Jolibois F; INSA-CNRS-UPS, LPCNO, Université Fédérale de Toulouse Midi-Pyrénées, 135 Avenue de Rangueil, F-31077 Toulouse, France., Poteau R; INSA-CNRS-UPS, LPCNO, Université Fédérale de Toulouse Midi-Pyrénées, 135 Avenue de Rangueil, F-31077 Toulouse, France., Coppel Y; LCC-CNRS, Université de Toulouse, INPT, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France., Kahn ML; LCC-CNRS, Université de Toulouse, INPT, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France., Gerber IC; INSA-CNRS-UPS, LPCNO, Université Fédérale de Toulouse Midi-Pyrénées, 135 Avenue de Rangueil, F-31077 Toulouse, France., Axet MR; LCC-CNRS, Université de Toulouse, INPT, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France., Serp P; LCC-CNRS, Université de Toulouse, INPT, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France., Hierso JC; Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France. |
---|---|
Jazyk: | angličtina |
Zdroj: | JACS Au [JACS Au] 2021 Jan 25; Vol. 1 (2), pp. 187-200. Date of Electronic Publication: 2021 Jan 25 (Print Publication: 2021). |
DOI: | 10.1021/jacsau.0c00062 |
Abstrakt: | Ultrasmall gold nanoparticles (NPs) stabilized in networks by polymantane ligands (diamondoids) were successfully used as precatalysts for highly selective heterogeneous gold-catalyzed dimethyl allyl(propargyl)malonate cyclization to 5-membered conjugated diene. Such reaction usually suffers from selectivity issues with homogeneous catalysts. This control over selectivity further opened the way to one-pot cascade reaction, as illustrated by the 1,6-enyne cycloisomerization-Diels-Alder reaction of dimethyl allyl propargyl malonate with maleic anhydride. The ability to assemble nanoparticles with controllable sizes and shapes within networks concerns research in sensors, medical diagnostics, information storage, and catalysis applications. Herein, the control of the synthesis of sub-2-nm gold NPs is achieved by the formation of dense networks, which are assembled in a single step reaction by employing ditopic polymantanethiols. By using 1,1'-bisadamantane-3,3'-dithiol (BAd-SH) and diamantane-4,9-dithiol (DAd-SH), serving both as bulky surface stabilizers and short-sized linkers, we provide a simple method to form uniformly small gold NPs (1.3 ± 0.2 nm to 1.6 ± 0.3 nm) embedded in rigid frameworks. These NP arrays are organized alongside short interparticular distances ranging from 1.9 to 2.7 nm. The analysis of gold NP surfaces and their modification were achieved in joint experimental and theoretical studies, using notably XPS, NMR, and DFT modeling. Our experimental studies and DFT analyses highlighted the necessary oxidative surface reorganization of individual nanoparticles for an effective enyne cycloisomerization. The modifications at bulky stabilizing ligands allow surface steric decongestion for the alkyne moiety activation but also result in network alteration by overoxidation of sulfurs. Thus, sub-2-nm nanoparticles originating from networks building create convenient conditions for generating reactive Au(I) surface single-sites-in the absence of silver additives-useful for heterogeneous gold-catalyzed enyne cyclization. These nanocatalysts, which as such ease organic products separation, also provide a convenient access for building further polycyclic complexity, owing to their high reactivity and selectivity. Competing Interests: The authors declare no competing financial interest. (© 2021 The Authors. Published by American Chemical Society.) |
Databáze: | MEDLINE |
Externí odkaz: |