Acoustically Driven Stark Effect in Transition Metal Dichalcogenide Monolayers.

Autor: Scolfaro D; Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859 Campinas, Brazil., Finamor M; Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859 Campinas, Brazil., Trinchão LO; Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859 Campinas, Brazil., Rosa BLT; Departamento de Fisica, Universidade Federal de Minas Gerais (UFMG), 30123-970 Belo Horizonte, Brazil., Chaves A; Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil.; Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium., Santos PV; Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5-7, 10117 Berlin, Germany., Iikawa F; Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859 Campinas, Brazil., Couto ODD Jr; Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859 Campinas, Brazil.
Jazyk: angličtina
Zdroj: ACS nano [ACS Nano] 2021 Sep 28; Vol. 15 (9), pp. 15371-15380. Date of Electronic Publication: 2021 Aug 27.
DOI: 10.1021/acsnano.1c06854
Abstrakt: The Stark effect is one of the most efficient mechanisms to manipulate many-body states in nanostructured systems. In mono- and few-layer transition metal dichalcogenides, it has been successfully induced by optical and electric field means. Here, we tune the optical emission energies and dissociate excitonic states in MoSe 2 monolayers employing the 220 MHz in-plane piezoelectric field carried by surface acoustic waves. We transfer the monolayers to high dielectric constant piezoelectric substrates, where the neutral exciton binding energy is reduced, allowing us to efficiently quench (above 90%) and red-shift the excitonic optical emissions. A model for the acoustically induced Stark effect yields neutral exciton and trion in-plane polarizabilities of 530 and 630 × 10 -5 meV/(kV/cm) 2 , respectively, which are considerably larger than those reported for monolayers encapsulated in hexagonal boron nitride. Large in-plane polarizabilities are an attractive ingredient to manipulate and modulate multiexciton interactions in two-dimensional semiconductor nanostructures for optoelectronic applications.
Databáze: MEDLINE