Thickness and structure of the martian crust from InSight seismic data.

Autor: Knapmeyer-Endrun B; Bensberg Observatory, University of Cologne, Vinzenz-Pallotti-Str. 26, 51429 Bergisch Gladbach, Germany. bknapmey@uni-koeln.de., Panning MP; Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., M/S 183-301, Pasadena, CA 91109, USA., Bissig F; Institute of Geophysics, ETH Zurich, Sonneggstr. 5, 8092 Zürich, Switzerland., Joshi R; Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany., Khan A; Institute of Geophysics, ETH Zurich, Sonneggstr. 5, 8092 Zürich, Switzerland.; Physik-Institut, University of Zurich, Zurich, Switzerland., Kim D; Department of Geology, University of Maryland, College Park, 8000 Regents Dr., College Park, MD, 20782-4211, USA., Lekić V; Department of Geology, University of Maryland, College Park, 8000 Regents Dr., College Park, MD, 20782-4211, USA., Tauzin B; Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Université Jean Monet, CNRS, Laboratoire de Géologie de Lyon, Terre, Planètes, Environnement, F-69622 Villeurbanne, France.; Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia., Tharimena S; Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., M/S 183-301, Pasadena, CA 91109, USA., Plasman M; Université de Paris, Institut de Physique du Globe de Paris, CNRS, 1 rue Jussieu, F-75005 Paris, France., Compaire N; Institut Supérieur de l'Aéronautique et de l'Espace SUPAERO, 10 Avenue Edouard Belin, 31400 Toulouse, France., Garcia RF; Institut Supérieur de l'Aéronautique et de l'Espace SUPAERO, 10 Avenue Edouard Belin, 31400 Toulouse, France., Margerin L; Institut de Recherche en Astrophysique et Planétologie, Université Toulouse III Paul Sabatier, CNRS, CNES, 14 Av. E. Belin, 31400 Toulouse, France., Schimmel M; Geosciences Barcelona-CSIC, Barcelona, Spain., Stutzmann É; Université de Paris, Institut de Physique du Globe de Paris, CNRS, 1 rue Jussieu, F-75005 Paris, France., Schmerr N; Department of Geology, University of Maryland, College Park, 8000 Regents Dr., College Park, MD, 20782-4211, USA., Bozdağ E; Department of Geophysics, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA., Plesa AC; Institute of Planetary Research, German Aerospace Center (DLR), 12489 Berlin, Germany., Wieczorek MA; Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, 06304 Nice, France., Broquet A; Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA.; Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, 06304 Nice, France., Antonangeli D; Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France., McLennan SM; Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA., Samuel H; Université de Paris, Institut de Physique du Globe de Paris, CNRS, 1 rue Jussieu, F-75005 Paris, France., Michaut C; Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université Jean Monet, CNRS, Laboratoire de Géologie de Lyon, Terre, Planètes, Environnement, F-69007 Lyon, France.; Institut Universitaire de France, Paris, France., Pan L; Center for Star and Planet Formation, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark., Smrekar SE; Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., M/S 183-301, Pasadena, CA 91109, USA., Johnson CL; Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.; Planetary Science Institute, Tucson, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719-2395, USA., Brinkman N; Institute of Geophysics, ETH Zurich, Sonneggstr. 5, 8092 Zürich, Switzerland., Mittelholz A; Institute of Geophysics, ETH Zurich, Sonneggstr. 5, 8092 Zürich, Switzerland., Rivoldini A; Royal Observatory of Belgium, Brussels, Belgium., Davis PM; Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095, USA., Lognonné P; Université de Paris, Institut de Physique du Globe de Paris, CNRS, 1 rue Jussieu, F-75005 Paris, France.; Institut Universitaire de France, Paris, France., Pinot B; Institut Supérieur de l'Aéronautique et de l'Espace SUPAERO, 10 Avenue Edouard Belin, 31400 Toulouse, France., Scholz JR; Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany., Stähler S; Institute of Geophysics, ETH Zurich, Sonneggstr. 5, 8092 Zürich, Switzerland., Knapmeyer M; Institute of Planetary Research, German Aerospace Center (DLR), 12489 Berlin, Germany., van Driel M; Institute of Geophysics, ETH Zurich, Sonneggstr. 5, 8092 Zürich, Switzerland., Giardini D; Institute of Geophysics, ETH Zurich, Sonneggstr. 5, 8092 Zürich, Switzerland., Banerdt WB; Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., M/S 183-301, Pasadena, CA 91109, USA.
Jazyk: angličtina
Zdroj: Science (New York, N.Y.) [Science] 2021 Jul 23; Vol. 373 (6553), pp. 438-443.
DOI: 10.1126/science.abf8966
Abstrakt: A planet's crust bears witness to the history of planetary formation and evolution, but for Mars, no absolute measurement of crustal thickness has been available. Here, we determine the structure of the crust beneath the InSight landing site on Mars using both marsquake recordings and the ambient wavefield. By analyzing seismic phases that are reflected and converted at subsurface interfaces, we find that the observations are consistent with models with at least two and possibly three interfaces. If the second interface is the boundary of the crust, the thickness is 20 ± 5 kilometers, whereas if the third interface is the boundary, the thickness is 39 ± 8 kilometers. Global maps of gravity and topography allow extrapolation of this point measurement to the whole planet, showing that the average thickness of the martian crust lies between 24 and 72 kilometers. Independent bulk composition and geodynamic constraints show that the thicker model is consistent with the abundances of crustal heat-producing elements observed for the shallow surface, whereas the thinner model requires greater concentration at depth.
(Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje