Coherent manipulation of an Andreev spin qubit.
Autor: | Hays M; Department of Applied Physics, Yale University, New Haven, CT 06520, USA. max.hays@yale.edu valla.fatemi@yale.edu michel.devoret@yale.edu., Fatemi V; Department of Applied Physics, Yale University, New Haven, CT 06520, USA. max.hays@yale.edu valla.fatemi@yale.edu michel.devoret@yale.edu., Bouman D; QuTech and Delft University of Technology, 2600 GA Delft, Netherlands.; Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, Netherlands., Cerrillo J; Área de Física Aplicada, Universidad Politécnica de Cartagena, E-30202 Cartagena, Spain.; Departamento de Física Teórica de la Materia Condensada C-V, Universidad Autónoma de Madrid, E-28049 Madrid, Spain., Diamond S; Department of Applied Physics, Yale University, New Haven, CT 06520, USA., Serniak K; Department of Applied Physics, Yale University, New Haven, CT 06520, USA., Connolly T; Department of Applied Physics, Yale University, New Haven, CT 06520, USA., Krogstrup P; Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark., Nygård J; Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark., Levy Yeyati A; Departamento de Física Teórica de la Materia Condensada C-V, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.; Condensed Matter Physics Center (IFIMAC) and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain., Geresdi A; QuTech and Delft University of Technology, 2600 GA Delft, Netherlands.; Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, Netherlands.; Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE 41296 Gothenburg, Sweden., Devoret MH; Department of Applied Physics, Yale University, New Haven, CT 06520, USA. max.hays@yale.edu valla.fatemi@yale.edu michel.devoret@yale.edu. |
---|---|
Jazyk: | angličtina |
Zdroj: | Science (New York, N.Y.) [Science] 2021 Jul 23; Vol. 373 (6553), pp. 430-433. |
DOI: | 10.1126/science.abf0345 |
Abstrakt: | Two promising architectures for solid-state quantum information processing are based on electron spins electrostatically confined in semiconductor quantum dots and the collective electrodynamic modes of superconducting circuits. Superconducting electrodynamic qubits involve macroscopic numbers of electrons and offer the advantage of larger coupling, whereas semiconductor spin qubits involve individual electrons trapped in microscopic volumes but are more difficult to link. We combined beneficial aspects of both platforms in the Andreev spin qubit: the spin degree of freedom of an electronic quasiparticle trapped in the supercurrent-carrying Andreev levels of a Josephson semiconductor nanowire. We performed coherent spin manipulation by combining single-shot circuit-quantum-electrodynamics readout and spin-flipping Raman transitions and found a spin-flip time T (Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |