Liquid biopsy posttreatment surveillance in endemic nasopharyngeal carcinoma: a cost-effective strategy to integrate circulating cell-free Epstein-Barr virus DNA.

Autor: Wu CF; Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China., Lin L; Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China., Mao YP; Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China., Deng B; Department of Radiation Oncology, Wuzhou Red Cross Hospital, Wuzhou, 543002, Guangxi, People's Republic of China., Lv JW; Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China., Zheng WH; Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China., Wen DW; Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China., Kou J; Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China., Chen FP; Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China., Yang XL; Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China., Xu SS; Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China., Ma J; Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China., Zhou GQ; Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China. zhougq@sysucc.org.cn., Sun Y; Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China. sunying@sysucc.org.cn.
Jazyk: angličtina
Zdroj: BMC medicine [BMC Med] 2021 Aug 26; Vol. 19 (1), pp. 193. Date of Electronic Publication: 2021 Aug 26.
DOI: 10.1186/s12916-021-02076-4
Abstrakt: Background: The optimal posttreatment surveillance strategy for nasopharyngeal carcinoma (NPC) remains unclear. Circulating cell-free Epstein-Barr virus (cfEBV) DNA has been recognized as a promising biomarker to facilitate early detection of NPC recurrence. Therefore, we aim to determine whether integrating circulating cfEBV DNA into NPC follow-up is cost-effective.
Methods: For each stage of asymptomatic nonmetastatic NPC patients after complete remission to primary NPC treatment, we developed a Markov model to compare the cost-effectiveness of the following surveillance strategies: routine follow-up strategy, i.e., (1) routine clinical physical examination; routine imaging strategies, including (2) routine magnetic resonance imaging plus computed tomography plus bone scintigraphy (MRI + CT + BS); and (3) routine 18 F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT); cfEBV DNA-guided imaging strategies, including (4) cfEBV DNA-guided MRI + CT + BS and (5) cfEBV DNA-guided PET/CT. Clinical probabilities, utilities, and costs were derived from published studies or databases. Sensitivity analyses were performed.
Results: For all disease stages, cfEBV DNA-guided imaging strategies demonstrated similar survival benefits but were considerably more economical than routine imaging strategies. They only required approximately one quarter of the number of imaging studies compared with routine imaging strategies to detect one recurrence. Specifically, cfEBV DNA-guided MRI + CT + BS was most cost-effective for stage II (incremental cost-effectiveness ratio [ICER] $57,308/quality-adjusted life-year [QALY]) and stage III ($46,860/QALY) patients, while cfEBV DNA-guided PET/CT was most cost-effective for stage IV patients ($62,269/QALY). However, routine follow-up was adequate for stage I patients due to their low recurrence risk.
Conclusions: The cfEBV DNA-guided imaging strategies are effective and cost-effective follow-up methods in NPC. These liquid biopsy-based strategies offer evidence-based, stage-specific surveillance modalities for clinicians and reduce disease burden for patients.
(© 2021. The Author(s).)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje