A synergistic strategy to remove hazardous water pollutants by mimicking burdock flower morphology structures of iron oxide phases.

Autor: Koli RR; School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea., Deshpande NG; School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea; Indian Institute of Information Technology, Surat, 395007, Gujarat, India., Kim DS; School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea., Cho HK; School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea; Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea. Electronic address: chohk@skku.edu.
Jazyk: angličtina
Zdroj: Chemosphere [Chemosphere] 2022 Jan; Vol. 286 (Pt 2), pp. 131789. Date of Electronic Publication: 2021 Aug 04.
DOI: 10.1016/j.chemosphere.2021.131789
Abstrakt: Artificially mimicking structures/morphologies available in the nature to develop multifunctional materials for catalysis is receiving greater attention. Particularly, the burdock flower morphology, which has a hollow-globe surrounded by spiky sheets, represents a multifunctional structure helpful in adsorption as well as intercalation of molecules. Given this, we have strategically developed a robust microwave (MW) bubble-template process to achieve highly uniform α-Fe 2 O 3 and carbon-enriched Fe 3 O 4 (Fe 3 O 4 @C) phases resembling the characteristics of spiky hollow burdock morphologies. The utilization of the MW bubble-templates as a pretreatment to the iron-based precursor solution helps in producing hollowed open-space ferrous glycolate burdock flower morphology with rapid production rate and without any addition of extra agents. Such burdock flower structures remain intact even after annealing in air/N 2 ambiance providing highly photoactive α-Fe 2 O 3 or magnetic Fe 3 O 4 @C, respectively. Utilizing the hollow burdock flower structures together with the individual photo/magnetic properties of iron oxide phases, a dual-layer filter was designed to remove hazardous dye molecules from water, which efficiently photodegraded (99.2 %) in natural sunlight as well as showed excellent adsorption (99.7 %) within minutes. Comparatively, a lower catalytic activity using simple iron oxide nanoparticles, closed, and faded burdock morphologies were seen. Hence, the high catalytic activity in removing the dye molecules, retention of structural phases after repeated use, and strong durability were a result of the synergetic effect of photo/magnetic properties, activated surface/spiky open burdock structure.
(Copyright © 2021 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE