Biomarkers of severe COVID-19 pneumonia on admission using data-mining powered by common laboratory blood tests-datasets.
Autor: | Pulgar-Sánchez M; Escuela de Ciencias Biológicas e Ingeniería. Universidad Yachay Tech, Urcuquí, Ecuador., Chamorro K; Escuela de Matemáticas y Ciencias Computacionales. Universidad Yachay Tech, Urcuquí, Ecuador; Universidad Técnica Del Norte, Ibarra, Ecuador., Fors M; Escuela de Medicina; Universidad de las Américas, Quito, Ecuador., Mora FX; IESS Hospital Quito Sur, Quito, Ecuador., Ramírez H; Escuela de Medicina; Universidad de las Américas, Quito, Ecuador., Fernandez-Moreira E; Escuela de Medicina, Universidad Espíritu Santo, Samborondón, Ecuador., Ballaz SJ; Escuela de Ciencias Biológicas e Ingeniería. Universidad Yachay Tech, Urcuquí, Ecuador; Escuela de Medicina, Universidad Espíritu Santo, Samborondón, Ecuador. Electronic address: sballaz@yachaytech.edu.ec. |
---|---|
Jazyk: | angličtina |
Zdroj: | Computers in biology and medicine [Comput Biol Med] 2021 Sep; Vol. 136, pp. 104738. Date of Electronic Publication: 2021 Aug 08. |
DOI: | 10.1016/j.compbiomed.2021.104738 |
Abstrakt: | In the epidemiological COVID-19 research, artificial intelligence is a unique approach to make predictions about disease severity to manage COVID-19 patients. A limitation of artificial intelligence is, however, the high risk of bias. We investigated the skill of data mining and machine learning, two advanced forms of artificial intelligence, to predict severe COVID-19 pneumonia based on routine laboratory tests. A sample of 4009 COVID-19 patients was divided into Severe (PaO (Copyright © 2021 Elsevier Ltd. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |